J. Moller, R. Hunter, J. Molina, A. Vizán, J. Peréz, L. F. M. da Silva
{"title":"Influence of the temperature on the fracture energy of a methacrylate adhesive for mining applications","authors":"J. Moller, R. Hunter, J. Molina, A. Vizán, J. Peréz, L. F. M. da Silva","doi":"10.1186/s40563-015-0041-5","DOIUrl":null,"url":null,"abstract":"<p>The effects of the increase in temperature are of great importance when evaluating the strength of an adhesive. Some processes in mining, such as copper electro-wining, produce thermal changes that modify the working conditions of equipment and structures; these elements are exposed to temperatures that can reach up to 80?°C. The study presented here aims to determine the behavior, under fracture of mode I type, of a two-component adhesive regularly used to join pieces in acid mist extraction systems. For this purpose, specimens for a double cantilever beam test were produced and tested in an Instron tensile machine, which includes an environmental chamber to control the test temperature; each lot of specimens was tested at 20, 50 and 80?°C respectively, at a speed of 1?mm/min. From the results obtained, it is possible to appreciate that the adhesive at 50?°C decreased its strength by 14?% with respect to those at the reference temperature of 20?°C. The same tendency was observed in the specimens tested at 80?°C, in which there was a pronounced reduction in strength quantified by 26?%. Moreover, deformation in the adhesive grew with the increase in temperature, acquiring greater plasticity and modifying its cohesive properties.</p>","PeriodicalId":464,"journal":{"name":"Applied Adhesion Science","volume":"3 1","pages":""},"PeriodicalIF":1.6800,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40563-015-0041-5","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Adhesion Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40563-015-0041-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 10
Abstract
The effects of the increase in temperature are of great importance when evaluating the strength of an adhesive. Some processes in mining, such as copper electro-wining, produce thermal changes that modify the working conditions of equipment and structures; these elements are exposed to temperatures that can reach up to 80?°C. The study presented here aims to determine the behavior, under fracture of mode I type, of a two-component adhesive regularly used to join pieces in acid mist extraction systems. For this purpose, specimens for a double cantilever beam test were produced and tested in an Instron tensile machine, which includes an environmental chamber to control the test temperature; each lot of specimens was tested at 20, 50 and 80?°C respectively, at a speed of 1?mm/min. From the results obtained, it is possible to appreciate that the adhesive at 50?°C decreased its strength by 14?% with respect to those at the reference temperature of 20?°C. The same tendency was observed in the specimens tested at 80?°C, in which there was a pronounced reduction in strength quantified by 26?%. Moreover, deformation in the adhesive grew with the increase in temperature, acquiring greater plasticity and modifying its cohesive properties.
期刊介绍:
Applied Adhesion Science focuses on practical applications of adhesives, with special emphasis in fields such as oil industry, aerospace and biomedicine. Topics related to the phenomena of adhesion and the application of adhesive materials are welcome, especially in biomedical areas such as adhesive dentistry. Both theoretical and experimental works are considered for publication. Applied Adhesion Science is a peer-reviewed open access journal published under the SpringerOpen brand. The journal''s open access policy offers a fast publication workflow whilst maintaining rigorous peer review process.