Exact solutions of (1+2)-dimensional non-linear time-space fractional PDEs

Q2 Mathematics
M. Kumar
{"title":"Exact solutions of (1+2)-dimensional non-linear time-space fractional PDEs","authors":"M. Kumar","doi":"10.1108/ajms-11-2021-0282","DOIUrl":null,"url":null,"abstract":"PurposeIn this paper, the author presents a hybrid method along with its error analysis to solve (1+2)-dimensional non-linear time-space fractional partial differential equations (FPDEs).Design/methodology/approachThe proposed method is a combination of Sumudu transform and a semi-analytc technique Daftardar-Gejji and Jafari method (DGJM).FindingsThe author solves various non-trivial examples using the proposed method. Moreover, the author obtained the solutions either in exact form or in a series that converges to a closed-form solution. The proposed method is a very good tool to solve this type of equations.Originality/valueThe present work is original. To the best of the author's knowledge, this work is not done by anyone in the literature.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-11-2021-0282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeIn this paper, the author presents a hybrid method along with its error analysis to solve (1+2)-dimensional non-linear time-space fractional partial differential equations (FPDEs).Design/methodology/approachThe proposed method is a combination of Sumudu transform and a semi-analytc technique Daftardar-Gejji and Jafari method (DGJM).FindingsThe author solves various non-trivial examples using the proposed method. Moreover, the author obtained the solutions either in exact form or in a series that converges to a closed-form solution. The proposed method is a very good tool to solve this type of equations.Originality/valueThe present work is original. To the best of the author's knowledge, this work is not done by anyone in the literature.
(1+2)维非线性时空分数阶偏微分方程的精确解
目的提出一种求解(1+2)维非线性时-空分数阶偏微分方程的混合方法,并对其误差进行了分析。该方法结合了Sumudu变换和半分析技术Daftardar-Gejji和Jafari方法(DGJM)。结果作者用所提出的方法解决了各种不平凡的例子。此外,作者还得到了精确解或收敛于封闭解的级数解。所提出的方法是求解这类方程的一个很好的工具。这幅作品是原创的。据作者所知,这项工作不是由文献中的任何人完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信