Sarah B. Gutzmann, E. Hodgson, D. Braun, J. Moore, R. Hovel
{"title":"Predicting fish weight using photographic image analysis: a case study of broad whitefish in the lower Mackenzie River watershed","authors":"Sarah B. Gutzmann, E. Hodgson, D. Braun, J. Moore, R. Hovel","doi":"10.1139/as-2021-0017","DOIUrl":null,"url":null,"abstract":"Many small-scale fisheries are remote in nature, making data collection logistically difficult. Thus, there is a need for accessible solutions that address the data gaps present in these fisheries. One possible solution is to incorporate photography into community- or harvest-based monitoring frameworks and employ these images to estimate biological data. Here we test this approach using łuk dagaii, or broad whitefish, Coregonus nasus (Pallus 1776) in the Gwich’in Settlement Area, a remote region in the Mackenzie River system in Canada’s Northwest Territories. We used photographs taken by Gwich’in collaborators using a simple, standardized set-up to ask the question: how accurately can weight be estimated from a photo? Using random forest models based on morphometric photograph measurements as well as season and location of harvest, we predicted broad whitefish weight to within 13% of true weight (257 g, for fish weighing an average of 2036 g). The model predictions were well distributed in their residuals for most fish, though we discuss biases at low and high weights. Image analysis is a simple, low cost, and accessible method that may contribute to ongoing, community/harvest-based fishery data collection where fish length (measured) and weight (predicted) can be tracked through time.","PeriodicalId":48575,"journal":{"name":"Arctic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/as-2021-0017","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many small-scale fisheries are remote in nature, making data collection logistically difficult. Thus, there is a need for accessible solutions that address the data gaps present in these fisheries. One possible solution is to incorporate photography into community- or harvest-based monitoring frameworks and employ these images to estimate biological data. Here we test this approach using łuk dagaii, or broad whitefish, Coregonus nasus (Pallus 1776) in the Gwich’in Settlement Area, a remote region in the Mackenzie River system in Canada’s Northwest Territories. We used photographs taken by Gwich’in collaborators using a simple, standardized set-up to ask the question: how accurately can weight be estimated from a photo? Using random forest models based on morphometric photograph measurements as well as season and location of harvest, we predicted broad whitefish weight to within 13% of true weight (257 g, for fish weighing an average of 2036 g). The model predictions were well distributed in their residuals for most fish, though we discuss biases at low and high weights. Image analysis is a simple, low cost, and accessible method that may contribute to ongoing, community/harvest-based fishery data collection where fish length (measured) and weight (predicted) can be tracked through time.
Arctic ScienceAgricultural and Biological Sciences-General Agricultural and Biological Sciences
CiteScore
5.00
自引率
12.10%
发文量
81
期刊介绍:
Arctic Science is an interdisciplinary journal that publishes original peer-reviewed research from all areas of natural science and applied science & engineering related to northern Polar Regions. The focus on basic and applied science includes the traditional knowledge and observations of the indigenous peoples of the region as well as cutting-edge developments in biological, chemical, physical and engineering science in all northern environments. Reports on interdisciplinary research are encouraged. Special issues and sections dealing with important issues in northern polar science are also considered.