Modeling and Control of the Public Opinion: An Agree-Disagree Opinion Model

IF 1.4 Q2 MATHEMATICS, APPLIED
S. Bidah, O. Zakary, M. Rachik
{"title":"Modeling and Control of the Public Opinion: An Agree-Disagree Opinion Model","authors":"S. Bidah, O. Zakary, M. Rachik","doi":"10.1155/2020/5864238","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to investigate optimal control to a new mathematical model that describes agree-disagree opinions during polls, which we presented and analyzed in Bidah et al., 2020. We first present the model and recall its different compartments. We formulate the optimal control problem by supplementing our model with a objective functional. Optimal control strategies are proposed to reduce the number of disagreeing people and the cost of interventions. We prove the existence of solutions to the control problem, we employ Pontryagin’s maximum principle to find the necessary conditions for the existence of the optimal controls, and Runge–Kutta forward-backward sweep numerical approximation method is used to solve the optimal control system, and we perform numerical simulations using various initial conditions and parameters to investigate several scenarios. Finally, a global sensitivity analysis is carried out based on the partial rank correlation coefficient method and the Latin hypercube sampling to study the influence of various parameters on the objective functional and to identify the most influential parameters.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/5864238","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/5864238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we aim to investigate optimal control to a new mathematical model that describes agree-disagree opinions during polls, which we presented and analyzed in Bidah et al., 2020. We first present the model and recall its different compartments. We formulate the optimal control problem by supplementing our model with a objective functional. Optimal control strategies are proposed to reduce the number of disagreeing people and the cost of interventions. We prove the existence of solutions to the control problem, we employ Pontryagin’s maximum principle to find the necessary conditions for the existence of the optimal controls, and Runge–Kutta forward-backward sweep numerical approximation method is used to solve the optimal control system, and we perform numerical simulations using various initial conditions and parameters to investigate several scenarios. Finally, a global sensitivity analysis is carried out based on the partial rank correlation coefficient method and the Latin hypercube sampling to study the influence of various parameters on the objective functional and to identify the most influential parameters.
舆论的建模与控制:一个同意-不同意的舆论模型
在本文中,我们的目标是研究一个新的数学模型的最优控制,该模型描述了民意调查期间的同意-不同意意见,我们在Bidah等人,2020中提出并分析了该模型。我们首先展示模型并回忆其不同的隔间。我们通过在模型中加入目标泛函来表述最优控制问题。提出了最优控制策略,以减少不同意的人数和干预的成本。我们证明了控制问题解的存在性,利用庞特里亚金极大值原理找到了最优控制存在的必要条件,利用龙格-库塔前向-后向扫描数值逼近法求解了最优控制系统,并在不同的初始条件和参数下进行了数值模拟,研究了几种情况。最后,基于偏秩相关系数法和拉丁超立方采样法进行全局灵敏度分析,研究各参数对目标泛函的影响,找出影响最大的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信