On Baer modules

IF 0.6 4区 数学 Q3 MATHEMATICS
C. Jayaram, Ünsal Tekir, Suat Koç
{"title":"On Baer modules","authors":"C. Jayaram, Ünsal Tekir, Suat Koç","doi":"10.33044/revuma.1741","DOIUrl":null,"url":null,"abstract":". A commutative ring R is said to be a Baer ring if for each a ∈ R , ann( a ) is generated by an idempotent element b ∈ R . In this paper, we extend the notion of a Baer ring to modules in terms of weak idempotent elements defined in a previous work by Jayaram and Tekir. Let R be a commutative ring with a nonzero identity and let M be a unital R -module. M is said to be a Baer module if for each m ∈ M there exists a weak idempotent element e ∈ R such that ann R ( m ) M = eM . Various examples and properties of Baer modules are given. Also, we characterize a certain class of modules/submodules such as von Neumann regular modules/prime submodules in terms of Baer modules.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.1741","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

. A commutative ring R is said to be a Baer ring if for each a ∈ R , ann( a ) is generated by an idempotent element b ∈ R . In this paper, we extend the notion of a Baer ring to modules in terms of weak idempotent elements defined in a previous work by Jayaram and Tekir. Let R be a commutative ring with a nonzero identity and let M be a unital R -module. M is said to be a Baer module if for each m ∈ M there exists a weak idempotent element e ∈ R such that ann R ( m ) M = eM . Various examples and properties of Baer modules are given. Also, we characterize a certain class of modules/submodules such as von Neumann regular modules/prime submodules in terms of Baer modules.
关于贝尔模块
。如果对每个A∈R, ann(A)由幂等元素b∈R生成,则称交换环R为Baer环。在本文中,我们将Baer环的概念推广到由Jayaram和Tekir在之前的工作中定义的弱幂等元构成的模。设R是一个具有非零单位元的交换环,设M是一个一元R模。如果对于每个M∈M,存在一个弱幂等元素e∈R,使得R (M) M = eM,则M是Baer模。给出了贝尔模的各种例子和性质。此外,我们还用Baer模描述了一类模/子模,如von Neumann正则模/素子模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信