Using ensemble learning and genetic algorithm on magnetic resonance imaging radiomics to classify molecular subtypes of breast cancer

IF 0.4 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
N. Le, D. Ho, Hoang Dang Khoa Ta, H. Nguyen
{"title":"Using ensemble learning and genetic algorithm on magnetic resonance imaging radiomics to classify molecular subtypes of breast cancer","authors":"N. Le, D. Ho, Hoang Dang Khoa Ta, H. Nguyen","doi":"10.1002/prm2.12089","DOIUrl":null,"url":null,"abstract":"Breast cancer (BRCA) is one of the most frequent malignant tumors with the highest incidence of cancer and the second most common oncologic cause of death in women. BRCA can be classified into different molecular subtypes, such as basal‐like, represented by triple‐negative BRCA (estrogen receptor [ER] negative, progesterone receptor [PR] negative, and human epidermal growth factor receptor 2 [HER‐2] negative). This study aims to determine whether radiomics features extracted from magnetic resonance imaging (MRI) could be used to distinguish various BRCA molecular subtypes. This study retrospectively collected a dataset of 922 BRCA patients with MRIs and experimental genomic profiles. A genetic algorithm is then employed to select the optimal MRI features for each subproblem. Subsequently, stacking ensemble learning is implemented to learn these features and generate the prediction outcomes. Our model showed a significant performance of 0.700, 0.732, and 0.642 (area under the curve; AUC) in predicting ER, PR, and HER‐2 statuses. For multiclassification of Luminal A, Luminal B, HER2, and TNBC, the AUCs reached 0.672, 0.624, 0.639, and 0.669, respectively. Our model is superior in most subtypes compared to the state‐of‐the‐art predictors on the same dataset. In conclusion, genetic algorithm and ensemble learning can be suitable for BRCA subtype classification with high performance.","PeriodicalId":40071,"journal":{"name":"Precision Medical Sciences","volume":"12 1","pages":"104 - 112"},"PeriodicalIF":0.4000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/prm2.12089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer (BRCA) is one of the most frequent malignant tumors with the highest incidence of cancer and the second most common oncologic cause of death in women. BRCA can be classified into different molecular subtypes, such as basal‐like, represented by triple‐negative BRCA (estrogen receptor [ER] negative, progesterone receptor [PR] negative, and human epidermal growth factor receptor 2 [HER‐2] negative). This study aims to determine whether radiomics features extracted from magnetic resonance imaging (MRI) could be used to distinguish various BRCA molecular subtypes. This study retrospectively collected a dataset of 922 BRCA patients with MRIs and experimental genomic profiles. A genetic algorithm is then employed to select the optimal MRI features for each subproblem. Subsequently, stacking ensemble learning is implemented to learn these features and generate the prediction outcomes. Our model showed a significant performance of 0.700, 0.732, and 0.642 (area under the curve; AUC) in predicting ER, PR, and HER‐2 statuses. For multiclassification of Luminal A, Luminal B, HER2, and TNBC, the AUCs reached 0.672, 0.624, 0.639, and 0.669, respectively. Our model is superior in most subtypes compared to the state‐of‐the‐art predictors on the same dataset. In conclusion, genetic algorithm and ensemble learning can be suitable for BRCA subtype classification with high performance.
利用磁共振成像放射组学的集成学习和遗传算法对乳腺癌分子亚型进行分类
癌症(BRCA)是最常见的恶性肿瘤之一,癌症发病率最高,也是女性第二常见的肿瘤死亡原因。BRCA可分为不同的分子亚型,如基底样,以三阴性BRCA(雌激素受体[ER]阴性、孕激素受体[PR]阴性和人表皮生长因子受体2[HER-2]阴性)为代表。本研究旨在确定从磁共振成像(MRI)中提取的放射组学特征是否可用于区分各种BRCA分子亚型。这项研究回顾性地收集了922名BRCA患者的数据集,包括核磁共振成像和实验基因组图谱。然后采用遗传算法为每个子问题选择最佳MRI特征。随后,实现堆叠集成学习来学习这些特征并生成预测结果。我们的模型在预测ER、PR和HER-2状态方面显示出0.700、0.732和0.642(曲线下面积;AUC)的显著性能。对于Luminal A、Luminal B、HER2和TNBC的多分类,AUC分别达到0.672、0.624、0.639和0.669。与同一数据集上的最先进预测因子相比,我们的模型在大多数亚型中都是优越的。总之,遗传算法和集成学习可以适用于BRCA亚型的高性能分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Medical Sciences
Precision Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
33
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信