Demi-shuffle duals of Magnus polynomials in a free associative algebra

Q3 Mathematics
Hiroaki Nakamura
{"title":"Demi-shuffle duals of Magnus polynomials in a free associative algebra","authors":"Hiroaki Nakamura","doi":"10.5802/alco.287","DOIUrl":null,"url":null,"abstract":"We study two linear bases of the free associative algebra $\\mathbb{Z}\\langle X,Y\\rangle$: one is formed by the Magnus polynomials of type $(\\mathrm{ad}_X^{k_1}Y)\\cdots(\\mathrm{ad}_X^{k_d}Y) X^k$ and the other is its dual basis (formed by what we call the `demi-shuffle' polynomials) with respect to the standard pairing on the monomials of $\\mathbb{Z}\\langle X,Y\\rangle$. As an application, we show a formula of Le-Murakami, Furusho type that expresses arbitrary coefficients of a group-like series $J\\in \\mathbb{C}\\langle\\langle X,Y\\rangle\\rangle$ by the `regular' coefficients of $J$.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

We study two linear bases of the free associative algebra $\mathbb{Z}\langle X,Y\rangle$: one is formed by the Magnus polynomials of type $(\mathrm{ad}_X^{k_1}Y)\cdots(\mathrm{ad}_X^{k_d}Y) X^k$ and the other is its dual basis (formed by what we call the `demi-shuffle' polynomials) with respect to the standard pairing on the monomials of $\mathbb{Z}\langle X,Y\rangle$. As an application, we show a formula of Le-Murakami, Furusho type that expresses arbitrary coefficients of a group-like series $J\in \mathbb{C}\langle\langle X,Y\rangle\rangle$ by the `regular' coefficients of $J$.
自由结合代数中Magnus多项式的半洗牌对偶
我们研究了自由结合代数$\mathbb{Z}\langle X,Y\rangle$的两个线性基:一个是由类型为$(\ mathm {ad}_X^{k_1}Y)\cdots(\ mathm {ad}_X^{k_d}Y) X^k$的Magnus多项式构成的,另一个是它的对偶基(由我们称之为“半shuffle”多项式构成)关于$\mathbb{Z}\langle X,Y\rangle$的单项式上的标准配对。作为一个应用,我们给出了一个Le-Murakami, Furusho类型的公式,该公式用$J$的正则系数来表示类群级数$J$在\mathbb{C}\langle\langle X,Y\rangle\rangle$中的任意系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信