Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces

Pub Date : 2019-01-01 DOI:10.1515/agms-2019-0008
Gioacchino Antonelli, Elia Brué, Daniele Semola
{"title":"Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces","authors":"Gioacchino Antonelli, Elia Brué, Daniele Semola","doi":"10.1515/agms-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this note is to generalize to the class of non collapsed RCD(K, N) metric measure spaces the volume bound for the effective singular strata obtained by Cheeger and Naber for non collapsed Ricci limits in [13]. The proof, which is based on a quantitative differentiation argument, closely follows the original one. As a simple outcome we provide a volume estimate for the enlargement of Gigli-DePhilippis’ boundary ([20, Remark 3.8]) of ncRCD(K, N) spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0008","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Abstract The aim of this note is to generalize to the class of non collapsed RCD(K, N) metric measure spaces the volume bound for the effective singular strata obtained by Cheeger and Naber for non collapsed Ricci limits in [13]. The proof, which is based on a quantitative differentiation argument, closely follows the original one. As a simple outcome we provide a volume estimate for the enlargement of Gigli-DePhilippis’ boundary ([20, Remark 3.8]) of ncRCD(K, N) spaces.
分享
查看原文
非坍缩RCD度量空间中定量奇异地层的体积边界
摘要本文的目的是将Cheeger和Naber在[13]中为非坍缩Ricci极限获得的有效奇异地层的体积界推广到非坍缩RCD(K,N)度量测度空间类。这一证明是基于定量微分的论点,与最初的论点密切相关。作为一个简单的结果,我们为ncRCD(K,N)空间的Gigli-DePhilippis边界([20,备注3.8])的扩大提供了一个体积估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信