Statistical Analysis on The Near-Wake Region of RANS Turbulence Closure Models for Vertical Axis Tidal Turbine

IF 2.4 Q3 ENERGY & FUELS
Muhammad Wafiuddin Abd Rahim, Anas Abdul Rahman, Ayu Abdul-Rahman, Muhammad Izham Ismail, Mohd Shukry Abdul Majid, Nasrul Amri Mohd Amin
{"title":"Statistical Analysis on The Near-Wake Region of RANS Turbulence Closure Models for Vertical Axis Tidal Turbine","authors":"Muhammad Wafiuddin Abd Rahim, Anas Abdul Rahman, Ayu Abdul-Rahman, Muhammad Izham Ismail, Mohd Shukry Abdul Majid, Nasrul Amri Mohd Amin","doi":"10.14710/ijred.2023.48380","DOIUrl":null,"url":null,"abstract":"The flow field in the near wake region (up to six turbine diameters downstream) of a tidal current turbine is strongly driven by the combined wake of the device support structure and the rotor. Accurate characterisation of the near-wake region is important, but it is dominated by highly turbulent, slow-moving fluid. At present, limited number of research has been undertaken into the characterisation of the near-wake region for a Vertical Axis Tidal Turbine (VATT) device using the Reynolds Averaged Navier Stokes (RANS) model in the shallow water environment of Malaysia. This paper presents a comprehensive statistical analysis using the Mean Absolute Error (MEA), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) on the near-wake region for shallow water application by comparing numerical solutions (i.e., different types of RANS turbulence models using Ansys Fluent) with published experimental data. Seven RANS turbulence models with a single VATT, represented by using a cylindrical object, were employed in the preliminary study. The statistical analysis performed in this study is essential in exploring and giving a detailed understanding on the most suitable RANS turbulence model to be improved, specifically on its near-wake region. In this study, the near wake region is defined as D ≤ 6, where D is the device diameter. The analysis shows that the RANS numerical solutions are unable to accurately replicate the near-wake region based on large statistical errors computed. The average RMSE of near-wake region at z/D = [2, 3, 4, 6] are 0.5864, 0.4127, 0.4344 and 0.3577 while the average RMSE at far-wake region z/D = [8, 12] are 0.2269 and 0.1590, where z is the distance from the cylindrical object along the length of domain. The statistical error values are found to decrease with increasing downstream distance from a cylindrical object. Notably, the standard k–ε and realizable k–ε models are the two best turbulent models representing the near-wake region in RANS modelling, yielding the lowest statistical errors (RMSE at z/D = [2, 3, 4, 6] are 0.5666, 0.4020, 0.4113 and 0.3455) among the tested parameters","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.48380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The flow field in the near wake region (up to six turbine diameters downstream) of a tidal current turbine is strongly driven by the combined wake of the device support structure and the rotor. Accurate characterisation of the near-wake region is important, but it is dominated by highly turbulent, slow-moving fluid. At present, limited number of research has been undertaken into the characterisation of the near-wake region for a Vertical Axis Tidal Turbine (VATT) device using the Reynolds Averaged Navier Stokes (RANS) model in the shallow water environment of Malaysia. This paper presents a comprehensive statistical analysis using the Mean Absolute Error (MEA), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) on the near-wake region for shallow water application by comparing numerical solutions (i.e., different types of RANS turbulence models using Ansys Fluent) with published experimental data. Seven RANS turbulence models with a single VATT, represented by using a cylindrical object, were employed in the preliminary study. The statistical analysis performed in this study is essential in exploring and giving a detailed understanding on the most suitable RANS turbulence model to be improved, specifically on its near-wake region. In this study, the near wake region is defined as D ≤ 6, where D is the device diameter. The analysis shows that the RANS numerical solutions are unable to accurately replicate the near-wake region based on large statistical errors computed. The average RMSE of near-wake region at z/D = [2, 3, 4, 6] are 0.5864, 0.4127, 0.4344 and 0.3577 while the average RMSE at far-wake region z/D = [8, 12] are 0.2269 and 0.1590, where z is the distance from the cylindrical object along the length of domain. The statistical error values are found to decrease with increasing downstream distance from a cylindrical object. Notably, the standard k–ε and realizable k–ε models are the two best turbulent models representing the near-wake region in RANS modelling, yielding the lowest statistical errors (RMSE at z/D = [2, 3, 4, 6] are 0.5666, 0.4020, 0.4113 and 0.3455) among the tested parameters
垂直轴潮汐涡轮机RANS湍流闭合模型近尾迹区域的统计分析
潮流涡轮机的近尾流区域(下游高达六个涡轮机直径)中的流场由装置支撑结构和转子的组合尾流强烈驱动。近尾流区域的精确表征很重要,但它主要由高度湍流、缓慢移动的流体组成。目前,在马来西亚浅水环境中,使用雷诺平均纳维-斯托克斯(RANS)模型对垂直轴潮汐涡轮机(VATT)装置的近尾流区域进行了有限的研究。本文通过将数值解(即使用Ansys Fluent的不同类型RANS湍流模型)与已发表的实验数据进行比较,对浅水应用中近尾流区域的平均绝对误差(MEA)、均方误差(MSE)和均方根误差(RMSE)进行了全面的统计分析。在初步研究中,采用了七个带有单个VATT的RANS湍流模型,用圆柱形物体表示。本研究中进行的统计分析对于探索和详细了解需要改进的最合适的RANS湍流模型,特别是其近尾流区域至关重要。在本研究中,近尾流区域被定义为D≤6,其中D是装置直径。分析表明,基于计算出的较大统计误差,RANS数值解无法准确复制近尾流区域。在z/D=[2,3,4,6]处,近尾流区的平均均方根误差分别为0.5864、0.4127、0.4344和0.3577,而在z/D=[8,12]处,远尾流区平均均方根值分别为0.2269和0.1590,其中z是沿域长度与圆柱形物体的距离。发现统计误差值随着与圆柱形物体的下游距离的增加而减小。值得注意的是,标准k–ε和可实现的k–ε模型是代表RANS模型中近尾流区域的两个最好的湍流模型,在测试参数中产生的统计误差最低(z/D=[2,3,4,6]时的均方根误差分别为0.5666、0.4020、0.4113和0.3455)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信