{"title":"Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential","authors":"Naoki Matsui","doi":"10.2748/tmj.20211216","DOIUrl":null,"url":null,"abstract":"We consider the following nonlinear Schr\\\"{o}dinger equation with a potential in $\\mathbb{R}^N$. We studied the existence of an initial value with critical mass for which the corresponding solution blows up. A previous study demonstrated the existence of an initial value for which the corresponding solution blows up when $N=1$ or $2$. In this work, without any restrictions on the number of dimensions $N$, we construct a critical-mass initial value for which the corresponding solution blows up in finite time and derive its blow-up rate.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20211216","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
We consider the following nonlinear Schr\"{o}dinger equation with a potential in $\mathbb{R}^N$. We studied the existence of an initial value with critical mass for which the corresponding solution blows up. A previous study demonstrated the existence of an initial value for which the corresponding solution blows up when $N=1$ or $2$. In this work, without any restrictions on the number of dimensions $N$, we construct a critical-mass initial value for which the corresponding solution blows up in finite time and derive its blow-up rate.