Measure ω , c

Q3 Mathematics
James Larrouy, G. N’Guérékata
{"title":"Measure <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>c</mi>\n </mrow>\n ","authors":"James Larrouy, G. N’Guérékata","doi":"10.1155/2022/9558928","DOIUrl":null,"url":null,"abstract":"<jats:p>The primary aim of this work is to introduce a new class of functions called <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>μ</mi>\n </math>\n </jats:inline-formula>-<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>c</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-pseudo-almost periodic functions. Using the measure theory, we generalize in a natural way some recent works and study some properties of those <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>μ</mi>\n </math>\n </jats:inline-formula>-<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>c</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-pseudo-almost periodic functions including two new composition results which play a crucial role for the existence of some <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>μ</mi>\n </math>\n </jats:inline-formula>-<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>c</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-pseudo-almost periodic solutions of certain semilinear differential equations and partial differential equations. We also investigate the existence and uniqueness of the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>μ</mi>\n </math>\n </jats:inline-formula>-<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>c</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-pseudo-almost periodic solutions for some models of Lasota-Wazewska equation with measure <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>c</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-pseudo-almost periodic coefficient and mixed delays.</jats:p>","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9558928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The primary aim of this work is to introduce a new class of functions called μ - ω , c -pseudo-almost periodic functions. Using the measure theory, we generalize in a natural way some recent works and study some properties of those μ - ω , c -pseudo-almost periodic functions including two new composition results which play a crucial role for the existence of some μ - ω , c -pseudo-almost periodic solutions of certain semilinear differential equations and partial differential equations. We also investigate the existence and uniqueness of the μ - ω , c -pseudo-almost periodic solutions for some models of Lasota-Wazewska equation with measure ω , c -pseudo-almost periodic coefficient and mixed delays.
测量ω, c
本工作的主要目的是引入一类新的函数,称为μ - ω, c -伪概周期函数。利用测度理论,我们自然地推广了最近的一些研究成果,并研究了那些μ - ω的一些性质。C -伪概周期函数包括两个新的合成结果,它们对某些μ - ω的存在起着至关重要的作用。一类半线性微分方程和偏微分方程的C -拟概周期解。我们还研究了μ - ω的存在性和唯一性。测度为ω的Lasota-Wazewska方程的c -伪概周期解,C -伪概周期系数与混合时滞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信