An introduction to persistent homology for time series

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
N. Ravishanker, Renjie Chen
{"title":"An introduction to persistent homology for time series","authors":"N. Ravishanker, Renjie Chen","doi":"10.1002/wics.1548","DOIUrl":null,"url":null,"abstract":"Topological data analysis (TDA) uses information from topological structures in complex data for statistical analysis and learning. This paper discusses persistent homology, a part of computational (algorithmic) topology that converts data into simplicial complexes and elicits information about the persistence of homology classes in the data. It computes and outputs the birth and death of such topologies via a persistence diagram. Data inputs for persistent homology are usually represented as point clouds or as functions, while the outputs depend on the nature of the analysis and commonly consist of either a persistence diagram, or persistence landscapes. This paper gives an introductory level tutorial on computing these summaries for time series using R, followed by an overview on using these approaches for time series classification and clustering.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1548","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1548","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8

Abstract

Topological data analysis (TDA) uses information from topological structures in complex data for statistical analysis and learning. This paper discusses persistent homology, a part of computational (algorithmic) topology that converts data into simplicial complexes and elicits information about the persistence of homology classes in the data. It computes and outputs the birth and death of such topologies via a persistence diagram. Data inputs for persistent homology are usually represented as point clouds or as functions, while the outputs depend on the nature of the analysis and commonly consist of either a persistence diagram, or persistence landscapes. This paper gives an introductory level tutorial on computing these summaries for time series using R, followed by an overview on using these approaches for time series classification and clustering.
时间序列的持久同源性引论
拓扑数据分析(TDA)使用复杂数据中拓扑结构的信息进行统计分析和学习。本文讨论了持久同调,这是计算(算法)拓扑的一部分,它将数据转换为单纯复形,并引出关于数据中同调类的持久性的信息。它通过持久性图来计算和输出这种拓扑的诞生和死亡。持久同源性的数据输入通常表示为点云或函数,而输出取决于分析的性质,通常由持久性图或持久性景观组成。本文提供了关于使用R计算时间序列的这些摘要的入门级教程,然后概述了使用这些方法进行时间序列分类和聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信