{"title":"An introduction to persistent homology for time series","authors":"N. Ravishanker, Renjie Chen","doi":"10.1002/wics.1548","DOIUrl":null,"url":null,"abstract":"Topological data analysis (TDA) uses information from topological structures in complex data for statistical analysis and learning. This paper discusses persistent homology, a part of computational (algorithmic) topology that converts data into simplicial complexes and elicits information about the persistence of homology classes in the data. It computes and outputs the birth and death of such topologies via a persistence diagram. Data inputs for persistent homology are usually represented as point clouds or as functions, while the outputs depend on the nature of the analysis and commonly consist of either a persistence diagram, or persistence landscapes. This paper gives an introductory level tutorial on computing these summaries for time series using R, followed by an overview on using these approaches for time series classification and clustering.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1548","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1548","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8
Abstract
Topological data analysis (TDA) uses information from topological structures in complex data for statistical analysis and learning. This paper discusses persistent homology, a part of computational (algorithmic) topology that converts data into simplicial complexes and elicits information about the persistence of homology classes in the data. It computes and outputs the birth and death of such topologies via a persistence diagram. Data inputs for persistent homology are usually represented as point clouds or as functions, while the outputs depend on the nature of the analysis and commonly consist of either a persistence diagram, or persistence landscapes. This paper gives an introductory level tutorial on computing these summaries for time series using R, followed by an overview on using these approaches for time series classification and clustering.