Lagrangian cobordism functor in microlocal sheaf theory I

Pub Date : 2023-09-04 DOI:10.1112/topo.12310
Wenyuan Li
{"title":"Lagrangian cobordism functor in microlocal sheaf theory I","authors":"Wenyuan Li","doi":"10.1112/topo.12310","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <msub>\n <mi>Λ</mi>\n <mo>±</mo>\n </msub>\n <annotation>$\\Lambda _\\pm$</annotation>\n </semantics></math> be Legendrian submanifolds in the cosphere bundle <math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mrow>\n <mo>∗</mo>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mi>M</mi>\n </mrow>\n <annotation>$T^{*,\\infty }M$</annotation>\n </semantics></math>. Given a Lagrangian cobordism <math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> of Legendrians from <math>\n <semantics>\n <msub>\n <mi>Λ</mi>\n <mo>−</mo>\n </msub>\n <annotation>$\\Lambda _-$</annotation>\n </semantics></math> to <math>\n <semantics>\n <msub>\n <mi>Λ</mi>\n <mo>+</mo>\n </msub>\n <annotation>$\\Lambda _+$</annotation>\n </semantics></math>, we construct a functor <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Φ</mi>\n <mi>L</mi>\n <mo>*</mo>\n </msubsup>\n <mo>:</mo>\n <msubsup>\n <mi>Sh</mi>\n <msub>\n <mi>Λ</mi>\n <mo>+</mo>\n </msub>\n <mi>c</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msubsup>\n <mi>Sh</mi>\n <msub>\n <mi>Λ</mi>\n <mo>−</mo>\n </msub>\n <mi>c</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <msub>\n <mo>⊗</mo>\n <mrow>\n <msub>\n <mi>C</mi>\n <mrow>\n <mo>−</mo>\n <mo>*</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Ω</mi>\n <mo>*</mo>\n </msub>\n <msub>\n <mi>Λ</mi>\n <mo>−</mo>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n </msub>\n <msub>\n <mi>C</mi>\n <mrow>\n <mo>−</mo>\n <mo>*</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Ω</mi>\n <mo>*</mo>\n </msub>\n <mi>L</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\mathrm{\\Phi}}_{L}^{\\ast}:{{\\rm Sh}}_{{\\mathrm{\\Lambda}}_{+}}^{c}(M)\\to {{\\rm Sh}}_{{\\mathrm{\\Lambda}}_{-}}^{c}(M){\\otimes}_{{C}_{-\\ast}({\\mathrm{\\Omega}}_{\\ast}{\\mathrm{\\Lambda}}_{-})}{C}_{-\\ast}({\\mathrm{\\Omega}}_{\\ast}L)$</annotation>\n </semantics></math> between sheaf categories of compact objects with singular support on <math>\n <semantics>\n <msub>\n <mi>Λ</mi>\n <mo>±</mo>\n </msub>\n <annotation>$\\Lambda _\\pm$</annotation>\n </semantics></math> and its right adjoint on sheaf categories of proper objects, using Nadler–Shende's work. This gives a sheaf theory description analogous to the Lagrangian cobordism map on Legendrian contact homologies and the right adjoint on their unital augmentation categories. We also deduce some long exact sequences and new obstructions to Lagrangian cobordisms between high-dimensional Legendrian submanifolds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12310","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let Λ ± $\Lambda _\pm$ be Legendrian submanifolds in the cosphere bundle T , M $T^{*,\infty }M$ . Given a Lagrangian cobordism L $L$ of Legendrians from Λ $\Lambda _-$ to Λ + $\Lambda _+$ , we construct a functor Φ L * : Sh Λ + c ( M ) Sh Λ c ( M ) C * ( Ω * Λ ) C * ( Ω * L ) ${\mathrm{\Phi}}_{L}^{\ast}:{{\rm Sh}}_{{\mathrm{\Lambda}}_{+}}^{c}(M)\to {{\rm Sh}}_{{\mathrm{\Lambda}}_{-}}^{c}(M){\otimes}_{{C}_{-\ast}({\mathrm{\Omega}}_{\ast}{\mathrm{\Lambda}}_{-})}{C}_{-\ast}({\mathrm{\Omega}}_{\ast}L)$ between sheaf categories of compact objects with singular support on Λ ± $\Lambda _\pm$ and its right adjoint on sheaf categories of proper objects, using Nadler–Shende's work. This gives a sheaf theory description analogous to the Lagrangian cobordism map on Legendrian contact homologies and the right adjoint on their unital augmentation categories. We also deduce some long exact sequences and new obstructions to Lagrangian cobordisms between high-dimensional Legendrian submanifolds.

Abstract Image

分享
查看原文
微局部簇理论I中的拉格朗日共基函子
让Λ±$\Lambda _\pm$ 是球束T *,∞M中的legend子流形$T^{*,\infty }M$ . 给定拉格朗日坐标L$L$ 来自Λ−$\Lambda _-$ 到Λ+$\Lambda _+$ ,构造了一个函子ΦL*:ShΛ+c(M)→ShΛ−c(M)⊗c−*(Ω*Λ−)c−*(Ω*L)${\mathrm{\Phi}}_{L}^{\ast}:{{\rm Sh}}_{{\mathrm{\Lambda}}_{+}}^{c}(M)\to {{\rm Sh}}_{{\mathrm{\Lambda}}_{-}}^{c}(M){\otimes}_{{C}_{-\ast}({\mathrm{\Omega}}_{\ast}{\mathrm{\Lambda}}_{-})}{C}_{-\ast}({\mathrm{\Omega}}_{\ast}L)$ 在Λ±上具有奇异支持的紧凑物体的轴类之间$\Lambda _\pm$ 以及它在固有对象的一组范畴上的右伴随,使用了Nadler-Shende的工作。这给出了一个类似于Legendrian接触同调上的拉格朗日协同映射及其单位增广范畴上的右伴随的束理论描述。我们还推导出了高维legendsub流形之间拉格朗日协同的一些长精确序列和新的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信