Investigation of the Cape Fear arch and East Coast fault system in the Coastal Plain of North Carolina and northeastern South Carolina, USA, using LiDAR data
{"title":"Investigation of the Cape Fear arch and East Coast fault system in the Coastal Plain of North Carolina and northeastern South Carolina, USA, using LiDAR data","authors":"R. Marple, James D. Hurd, Jr.","doi":"10.4138/atlgeol.2021.015","DOIUrl":null,"url":null,"abstract":"LiDAR data collected in the Coastal Plain of the Carolinas revealed numerous, mostly NW-SE-oriented lineaments that cross the Cape Fear arch, the longest of which are the 50- to 115-km-long, NW-SE-oriented Faison, Jarmantown, Livingston Creek, and White Marsh lineaments and the ~50-km-long, ENE-WSW-oriented Tomahawk lineament in southeastern North Carolina. Their interpretation is based mainly on locally incised channels, abrupt stream bends, topographic scarps, and linear areas of uplifted Coastal Plain sediments. The Precambrian to Paleozoic Graingers basin or synform in the pre-Cretaceous basement terminates to the southwest along the ~28-km-long, 3- to 7-km-wide Jarmantown high. The ~115-km-long Jarmantown lineament may be the surface expression of the previously reported Neuse fault, the location of which has been controversial. The Jarmantown and other lineaments crossing the Cape Fear arch suggest that the arch is structurally complex. Further investigation of the East Coast fault system (ECFS) along the west side of the Cape Fear arch in North Carolina revealed that it is located farther to the northwest than previously reported, thereby making it continuous with the ECFS in northeastern South Carolina where it forms a ~15° restraining bend. We postulate that the interpreted faults crossing the Cape Fear arch in southeastern North Carolina formed to compensate for the increased compression and change in volume from dextral motion along the fault bend. Holocene paleoliquefaction deposits near the coast, a vertically offset Pleistocene(?) beach ridge along the interpreted Faison fault, and Tertiary surface faults along the ECFS northeast of Smithfield, North Carolina, suggest that large Quaternary earthquakes may have occurred along the ECFS, the Faison and Neuse faults, and other interpreted faults that cross the Cape Fear arch.\n \n \n \n ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4138/atlgeol.2021.015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
LiDAR data collected in the Coastal Plain of the Carolinas revealed numerous, mostly NW-SE-oriented lineaments that cross the Cape Fear arch, the longest of which are the 50- to 115-km-long, NW-SE-oriented Faison, Jarmantown, Livingston Creek, and White Marsh lineaments and the ~50-km-long, ENE-WSW-oriented Tomahawk lineament in southeastern North Carolina. Their interpretation is based mainly on locally incised channels, abrupt stream bends, topographic scarps, and linear areas of uplifted Coastal Plain sediments. The Precambrian to Paleozoic Graingers basin or synform in the pre-Cretaceous basement terminates to the southwest along the ~28-km-long, 3- to 7-km-wide Jarmantown high. The ~115-km-long Jarmantown lineament may be the surface expression of the previously reported Neuse fault, the location of which has been controversial. The Jarmantown and other lineaments crossing the Cape Fear arch suggest that the arch is structurally complex. Further investigation of the East Coast fault system (ECFS) along the west side of the Cape Fear arch in North Carolina revealed that it is located farther to the northwest than previously reported, thereby making it continuous with the ECFS in northeastern South Carolina where it forms a ~15° restraining bend. We postulate that the interpreted faults crossing the Cape Fear arch in southeastern North Carolina formed to compensate for the increased compression and change in volume from dextral motion along the fault bend. Holocene paleoliquefaction deposits near the coast, a vertically offset Pleistocene(?) beach ridge along the interpreted Faison fault, and Tertiary surface faults along the ECFS northeast of Smithfield, North Carolina, suggest that large Quaternary earthquakes may have occurred along the ECFS, the Faison and Neuse faults, and other interpreted faults that cross the Cape Fear arch.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.