Electron paramagnetic resonance (EPR) spectroscopy: Food, biomedical and pharmaceutical analysis

IF 0.3 Q4 SPECTROSCOPY
S. Iravani, G. Soufi
{"title":"Electron paramagnetic resonance (EPR) spectroscopy: Food, biomedical and pharmaceutical analysis","authors":"S. Iravani, G. Soufi","doi":"10.3233/bsi-200206","DOIUrl":null,"url":null,"abstract":"Electron paramagnetic resonance (EPR) spectroscopy can be applied as an effective and non-invasive spectroscopic method for analyzing samples with unpaired electrons. EPR is suitable for the quantification of radical species, assessment of redox chemical reaction mechanisms in foods, evaluation of the antioxidant capacity of food, as well as for the analysis of food quality, stability, and shelf life. It can be employed for evaluating and monitoring the drug release processes, in vitro and in vivo. EPR can be employed for the direct detection of free radical metabolites, and the evaluation of drug release mechanisms from biodegradable polymers; it can be employed for analyzing the drug antioxidant effects. Additionally, spatial resolution can be achieved through EPR-imaging. EPR spectroscopy and imaging have shown diverse applications in food, biomedical and pharmaceutical fields, and also more applications are predictable to emerge in the future. This review highlights recent advances and important challenges related to the application of EPR in food, biomedical and pharmaceutical analysis and assessment.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/bsi-200206","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/bsi-200206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 3

Abstract

Electron paramagnetic resonance (EPR) spectroscopy can be applied as an effective and non-invasive spectroscopic method for analyzing samples with unpaired electrons. EPR is suitable for the quantification of radical species, assessment of redox chemical reaction mechanisms in foods, evaluation of the antioxidant capacity of food, as well as for the analysis of food quality, stability, and shelf life. It can be employed for evaluating and monitoring the drug release processes, in vitro and in vivo. EPR can be employed for the direct detection of free radical metabolites, and the evaluation of drug release mechanisms from biodegradable polymers; it can be employed for analyzing the drug antioxidant effects. Additionally, spatial resolution can be achieved through EPR-imaging. EPR spectroscopy and imaging have shown diverse applications in food, biomedical and pharmaceutical fields, and also more applications are predictable to emerge in the future. This review highlights recent advances and important challenges related to the application of EPR in food, biomedical and pharmaceutical analysis and assessment.
电子顺磁共振(EPR)光谱:食品、生物医学和药物分析
电子顺磁共振(EPR)光谱是一种有效的、无创的分析未配对电子样品的光谱方法。EPR适用于自由基种类的定量测定、食品中氧化还原化学反应机制的评价、食品抗氧化能力的评价以及食品质量、稳定性和保质期的分析。它可用于体外和体内药物释放过程的评价和监测。EPR可用于直接检测自由基代谢产物,评价生物降解聚合物的药物释放机制;可用于分析药物的抗氧化作用。此外,通过epr成像可以实现空间分辨率。EPR光谱和成像技术已经在食品、生物医学和制药等领域得到了广泛的应用,未来还将出现更多的应用。本文综述了EPR在食品、生物医学和药物分析与评价方面的最新进展和面临的重要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信