Online distributed tracking of generalized Nash equilibrium on physical networks

Yifan Su, Feng Liu, Zhaojian Wang, Shengwei Mei, Qiang Lu
{"title":"Online distributed tracking of generalized Nash equilibrium on physical networks","authors":"Yifan Su,&nbsp;Feng Liu,&nbsp;Zhaojian Wang,&nbsp;Shengwei Mei,&nbsp;Qiang Lu","doi":"10.1007/s43684-021-00004-0","DOIUrl":null,"url":null,"abstract":"<div><p>In generalized Nash equilibrium (GNE) seeking problems over physical networks such as power grids, the enforcement of network constraints and time-varying environment may bring high computational costs. Developing online algorithms is recognized as a promising method to cope with this challenge, where the task of computing system states is replaced by directly using measured values from the physical network. In this paper, we propose an online distributed algorithm via measurement feedback to track the GNE in a time-varying networked resource sharing market. Regarding that some system states are not measurable and measurement noise always exists, a dynamic state estimator is incorporated based on a Kalman filter, rendering a closed-loop dynamics of measurement-feedback driven online algorithm. We prove that, with a fixed step size, this online algorithm converges to a neighborhood of the GNE in expectation. Numerical simulations validate the theoretical results.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00004-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00004-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In generalized Nash equilibrium (GNE) seeking problems over physical networks such as power grids, the enforcement of network constraints and time-varying environment may bring high computational costs. Developing online algorithms is recognized as a promising method to cope with this challenge, where the task of computing system states is replaced by directly using measured values from the physical network. In this paper, we propose an online distributed algorithm via measurement feedback to track the GNE in a time-varying networked resource sharing market. Regarding that some system states are not measurable and measurement noise always exists, a dynamic state estimator is incorporated based on a Kalman filter, rendering a closed-loop dynamics of measurement-feedback driven online algorithm. We prove that, with a fixed step size, this online algorithm converges to a neighborhood of the GNE in expectation. Numerical simulations validate the theoretical results.

物理网络上广义纳什均衡的在线分布式跟踪
在电网等物理网络的广义纳什均衡(GNE)求解问题中,网络约束的执行和时变环境可能会带来高昂的计算成本。开发在线算法被认为是应对这一挑战的可行方法,在这种算法中,计算系统状态的任务被直接使用来自物理网络的测量值所取代。在本文中,我们提出了一种在线分布式算法,通过测量反馈来跟踪时变网络资源共享市场中的 GNE。考虑到某些系统状态不可测量且测量噪声始终存在,我们在卡尔曼滤波器的基础上加入了动态状态估计器,从而实现了测量反馈驱动的闭环动态在线算法。我们证明,在步长固定的情况下,这种在线算法会收敛到 GNE 的期望邻域。数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信