Resilience assessment of water distribution networks exposed to substance intrusion

IF 1.6 3区 环境科学与生态学 Q3 WATER RESOURCES
E. Rokstad, C. Makropoulos, M. M. Rokstad
{"title":"Resilience assessment of water distribution networks exposed to substance intrusion","authors":"E. Rokstad, C. Makropoulos, M. M. Rokstad","doi":"10.1080/1573062X.2023.2237944","DOIUrl":null,"url":null,"abstract":"ABSTRACT Resilience in water distribution systems is the ability to detect, respond and recover from disruptive events and calamities, such as extreme weather, natural disasters, human errors, and malicious attacks. A system’s resilience can be influenced by its topology. This study applies a novel network generation procedure based on the C-town benchmark network to produce 296 network variants with similar structures yet unique topological features. Then, a stress-testing procedure is applied to expose these variants to a set of substance intrusion scenarios. Finally, their performance is ranked according to a set of resilience metrics, and their relationship to the network design is evaluated based on topological attributes through correlation analysis. The results suggest that specific topological attributes, often characterized as a branched network design, tend to be more resilient when exposed to quality-related failures. As such, it provides insights into the relationship between topology and resilience of water distribution systems.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"20 1","pages":"1110 - 1122"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1573062X.2023.2237944","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Resilience in water distribution systems is the ability to detect, respond and recover from disruptive events and calamities, such as extreme weather, natural disasters, human errors, and malicious attacks. A system’s resilience can be influenced by its topology. This study applies a novel network generation procedure based on the C-town benchmark network to produce 296 network variants with similar structures yet unique topological features. Then, a stress-testing procedure is applied to expose these variants to a set of substance intrusion scenarios. Finally, their performance is ranked according to a set of resilience metrics, and their relationship to the network design is evaluated based on topological attributes through correlation analysis. The results suggest that specific topological attributes, often characterized as a branched network design, tend to be more resilient when exposed to quality-related failures. As such, it provides insights into the relationship between topology and resilience of water distribution systems.
受物质入侵影响的配水管网弹性评估
摘要配水系统的弹性是指能够检测、响应和恢复破坏性事件和灾难,如极端天气、自然灾害、人为错误和恶意攻击。系统的弹性可能受到其拓扑结构的影响。本研究应用了一种基于C镇基准网络的新型网络生成程序,生成了296个结构相似但拓扑特征独特的网络变体。然后,应用压力测试程序将这些变体暴露在一组物质入侵场景中。最后,根据一组弹性指标对其性能进行排名,并通过相关性分析基于拓扑属性评估其与网络设计的关系。结果表明,特定的拓扑属性,通常被描述为分支网络设计,在暴露于质量相关故障时往往更具弹性。因此,它可以深入了解配水系统的拓扑结构和弹性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urban Water Journal
Urban Water Journal WATER RESOURCES-
CiteScore
4.40
自引率
11.10%
发文量
101
审稿时长
3 months
期刊介绍: Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management. Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include: network design, optimisation, management, operation and rehabilitation; novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system; demand management and water efficiency, water recycling and source control; stormwater management, urban flood risk quantification and management; monitoring, utilisation and management of urban water bodies including groundwater; water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure); resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing; data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems; decision-support and informatic tools;...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信