EFFECT OF THE DIRECTION OF AN EXTERNAL APPLIED MAGNETIC FIELD ON THE MICROMAGNETIC PROPERTIES OF Fe CUBOIDS

IF 0.9 Q4 PHYSICS, APPLIED
Mauricio Galvis-Patiño, Johans Restrepo-Cárdenas
{"title":"EFFECT OF THE DIRECTION OF AN EXTERNAL APPLIED MAGNETIC FIELD ON THE MICROMAGNETIC PROPERTIES OF Fe CUBOIDS","authors":"Mauricio Galvis-Patiño, Johans Restrepo-Cárdenas","doi":"10.15446/mo.n65.100454","DOIUrl":null,"url":null,"abstract":"We present the results of the study of the micromagnetic properties and the magnetization dynamics of a system of Fe cuboids with a square base of length L = 120 nm and thickness, t = 9 nm, under free boundary conditions as a function of the angle of an in-plane applied external magnetic field, for which we have used the Ubermag micromagnetic program that uses the OOMMF package and the finite difference method with a cell size, c = 3 nm. Hysteresis loops show that the coercive field (Hc) decreases with increasing azimuthal angle, from one easy-magnetizing axis to the other; in turn, the remanent magnetization (Mr) remains constant and magnetization diagrams indicate the presence of magnetic domains and walls in the (x, y) plane, accompanied by a magnetization component that points, both, outward and inward of the plane. This behavior is associated with the type of anisotropy and the aspect ratio of the cuboid. Finally, energy graphs show how the competition between the dipole (Ed), the exchange (Eex), anisotropy (EK), and Zeeman (EZ) energies occurs along the hysteresis loops.","PeriodicalId":42463,"journal":{"name":"MOMENTO-Revista de Fisica","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOMENTO-Revista de Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/mo.n65.100454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present the results of the study of the micromagnetic properties and the magnetization dynamics of a system of Fe cuboids with a square base of length L = 120 nm and thickness, t = 9 nm, under free boundary conditions as a function of the angle of an in-plane applied external magnetic field, for which we have used the Ubermag micromagnetic program that uses the OOMMF package and the finite difference method with a cell size, c = 3 nm. Hysteresis loops show that the coercive field (Hc) decreases with increasing azimuthal angle, from one easy-magnetizing axis to the other; in turn, the remanent magnetization (Mr) remains constant and magnetization diagrams indicate the presence of magnetic domains and walls in the (x, y) plane, accompanied by a magnetization component that points, both, outward and inward of the plane. This behavior is associated with the type of anisotropy and the aspect ratio of the cuboid. Finally, energy graphs show how the competition between the dipole (Ed), the exchange (Eex), anisotropy (EK), and Zeeman (EZ) energies occurs along the hysteresis loops.
外加磁场方向对铁立方体微磁性质的影响
我们给出了在自由边界条件下,作为平面内施加的外部磁场角度的函数,具有长度L=120nm和厚度t=9nm的正方形基底的Fe长方体系统的微磁性质和磁化动力学的研究结果,为此,我们使用了Ubermag微磁程序,该程序使用OOMMF封装和单元尺寸为c=3nm的有限差分法。磁滞回线表明,矫顽场(Hc)随着方位角的增加而减小,从一个易磁化轴到另一个易励磁轴;反过来,剩余磁化强度(Mr)保持不变,磁化图表明(x,y)平面中存在磁畴和磁畴壁,并伴有指向平面内外的磁化分量。这种行为与长方体的各向异性类型和纵横比有关。最后,能量图显示了偶极(Ed)、交换(Eex)、各向异性(EK)和塞曼(EZ)能量之间的竞争是如何沿着磁滞回线发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MOMENTO-Revista de Fisica
MOMENTO-Revista de Fisica PHYSICS, APPLIED-
CiteScore
1.10
自引率
37.50%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信