Real and symmetric matrices

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tsao-Hsien Chen, D. Nadler
{"title":"Real and symmetric matrices","authors":"Tsao-Hsien Chen, D. Nadler","doi":"10.1215/00127094-2022-0076","DOIUrl":null,"url":null,"abstract":"We construct a stratified homeomorphism between the space of $n\\times n$ real matrices with real eigenvalues and the space of $n\\times n$ symmetric matrices with real eigenvalues, which restricts to a real analytic isomorphism between individual $GL_n(\\mathbb R)$-adjoint orbits and $O_n(\\mathbb C)$-adjoint orbits. We also establish similar results in more general settings of Lie algebras of classical types and quiver varieties. To this end, we prove a general result about involutions on hyper-Kahler quotients of linear spaces. We discuss applications to the (generalized) Kostant-Sekiguchi correspondence, singularities of real and symmetric adjoint orbit closures, and Springer theory for real groups and symmetric spaces.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a stratified homeomorphism between the space of $n\times n$ real matrices with real eigenvalues and the space of $n\times n$ symmetric matrices with real eigenvalues, which restricts to a real analytic isomorphism between individual $GL_n(\mathbb R)$-adjoint orbits and $O_n(\mathbb C)$-adjoint orbits. We also establish similar results in more general settings of Lie algebras of classical types and quiver varieties. To this end, we prove a general result about involutions on hyper-Kahler quotients of linear spaces. We discuss applications to the (generalized) Kostant-Sekiguchi correspondence, singularities of real and symmetric adjoint orbit closures, and Springer theory for real groups and symmetric spaces.
实矩阵和对称矩阵
我们构造了具有实特征值的$n×n$实矩阵的空间和具有实特征量的$n次n$对称矩阵的空间之间的分层同胚,它限制了单个$GL_n(\mathbb R)$-伴随轨道和$O_n(\mathbbC)$-伴轨道之间的实解析同构。在经典型李代数和箭袋变种李代数的更一般的设置中,我们也建立了类似的结果。为此,我们证明了线性空间的超Kahler商上对合的一个一般结果。我们讨论了(广义)Kostant-Sekiguchi对应关系的应用,实和对称伴随轨道闭包的奇点,以及实群和对称空间的Springer理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信