Effect of chemical composition and microstructure on the crack growth and machinability of GG20 gray cast iron for brake drum application

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING
Hanie Ghanbari, M. Ketabchi, Esmaeil Damavandi
{"title":"Effect of chemical composition and microstructure on the crack growth and machinability of GG20 gray cast iron for brake drum application","authors":"Hanie Ghanbari, M. Ketabchi, Esmaeil Damavandi","doi":"10.1080/10910344.2023.2180752","DOIUrl":null,"url":null,"abstract":"Abstract The objective of the present study is to investigate the effect of chemical composition and microstructure on machinability, mechanical properties, and crack growth of GG-20 gray cast iron for brake drum application. The effects of a reduction in C and Si on microstructural parameters such as type, size, and aspect ratio of graphite particles, interlamellar spacing of pearlite, and the presence of MnS were investigated. In the following, the effect of different microstructures on mechanical properties and machinability of cast iron were studied. The fracture surface, crack growth, worn surface, chip formation and wear on cutting tools have been studied as well. The results showed that both tensile strength and hardness increased, and the machinability reduced by decreasing C and Si. By reducing the C content from 3.4% to 3.2%, the maximum hardness value and tensile strength were obtained to be 207HB and 286 MPa, respectively. Moreover, the Ra and Rz values were increased to 4.3 μm and 25.8 μm, respectively. With an increase in the length of graphite flakes, the distance between microcracks on the machined chips decreased. In the sample with the lower hardness value, delamination occurred extensively and led to the disappearance of cracks and pores on the worn surface.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2180752","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The objective of the present study is to investigate the effect of chemical composition and microstructure on machinability, mechanical properties, and crack growth of GG-20 gray cast iron for brake drum application. The effects of a reduction in C and Si on microstructural parameters such as type, size, and aspect ratio of graphite particles, interlamellar spacing of pearlite, and the presence of MnS were investigated. In the following, the effect of different microstructures on mechanical properties and machinability of cast iron were studied. The fracture surface, crack growth, worn surface, chip formation and wear on cutting tools have been studied as well. The results showed that both tensile strength and hardness increased, and the machinability reduced by decreasing C and Si. By reducing the C content from 3.4% to 3.2%, the maximum hardness value and tensile strength were obtained to be 207HB and 286 MPa, respectively. Moreover, the Ra and Rz values were increased to 4.3 μm and 25.8 μm, respectively. With an increase in the length of graphite flakes, the distance between microcracks on the machined chips decreased. In the sample with the lower hardness value, delamination occurred extensively and led to the disappearance of cracks and pores on the worn surface.
化学成分和组织对GG20制动鼓用灰铸铁裂纹扩展和可加工性的影响
摘要本研究的目的是研究化学成分和微观结构对制动鼓用GG-20灰铸铁的机械加工性能、力学性能和裂纹扩展的影响。研究了C和Si的还原对石墨颗粒的类型、尺寸和长径比、珠光体的层间间距以及MnS的存在等微观结构参数的影响。在下文中,研究了不同组织对铸铁力学性能和可加工性的影响。对刀具的断裂面、裂纹扩展、磨损面、切屑形成和磨损进行了研究。结果表明,随着碳和硅含量的降低,抗拉强度和硬度都有所提高,可加工性降低。当碳含量从3.4%降低到3.2%时,最大硬度值和抗拉强度分别为207HB和286 MPa。此外,Ra和Rz值增加到4.3 μm和25.8 μm。随着石墨片长度的增加,加工芯片上微裂纹之间的距离减小。在硬度值较低的样品中,分层广泛发生,并导致磨损表面的裂纹和孔隙消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信