{"title":"Penalized nonparametric likelihood-based inference for current status data model","authors":"Meiling Hao, Yuanyuan Lin, Kin-Yat Liu, Xingqiu Zhao","doi":"10.1214/21-ejs1970","DOIUrl":null,"url":null,"abstract":": Deriving the limiting distribution of a nonparametric estimate is rather challenging but of fundamental importance to statistical inference. For the current status data, we study a penalized nonparametric likelihood- based estimator for an unknown cumulative hazard function, and establish the pointwise asymptotic normality of the resulting nonparametric esti- mate. We also propose the penalized likelihood ratio tests for local and global hypotheses, derive their limiting distributions, and study the opti- mality of the global test. Simulation studies show that the proposed method works well compared to the classical likelihood ratio test.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ejs1970","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
: Deriving the limiting distribution of a nonparametric estimate is rather challenging but of fundamental importance to statistical inference. For the current status data, we study a penalized nonparametric likelihood- based estimator for an unknown cumulative hazard function, and establish the pointwise asymptotic normality of the resulting nonparametric esti- mate. We also propose the penalized likelihood ratio tests for local and global hypotheses, derive their limiting distributions, and study the opti- mality of the global test. Simulation studies show that the proposed method works well compared to the classical likelihood ratio test.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.