M. Billah, Md. Nasim Adnan, Mostafijur Rahman Akhond, Romana Rahman Ema, Md. Alam Hossain, S. Galib
{"title":"Rainfall prediction system for Bangladesh using long short-term memory","authors":"M. Billah, Md. Nasim Adnan, Mostafijur Rahman Akhond, Romana Rahman Ema, Md. Alam Hossain, S. Galib","doi":"10.1515/comp-2022-0254","DOIUrl":null,"url":null,"abstract":"Abstract Rainfall prediction is a challenging task and has extreme significance in weather forecasting. Accurate rainfall prediction can play a great role in agricultural, aviation, natural phenomenon, flood, construction, transport, etc. Weather or climate is assumed to be one of the most complex systems. Again, chaos, also called as “butterfly effect,” limits our ability to make weather predictable. So, it is not easy to predict rainfall by conventional machine learning approaches. However, several kinds of research have been proposed to predict rainfall by using different computational methods. To accomplish chaotic rainfall prediction system for Bangladesh, in this study, historical data set-driven long short term memory (LSTM) networks method has been used, which overcomes the complexities and chaos-related problems faced by other approaches. The proposed method has three principal phases: (i) The most useful 10 features are chosen from 20 data attributes. (ii) After that, a two-layer LSTM model is designed. (iii) Both conventional machine learning approaches and recent works are compared with the LSTM model. This approach has gained 97.14% accuracy in predicting rainfall (in millimeters), which outperforms the state-of-the-art solutions. Also, this work is a pioneer work to the rainfall prediction system for Bangladesh.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0254","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Rainfall prediction is a challenging task and has extreme significance in weather forecasting. Accurate rainfall prediction can play a great role in agricultural, aviation, natural phenomenon, flood, construction, transport, etc. Weather or climate is assumed to be one of the most complex systems. Again, chaos, also called as “butterfly effect,” limits our ability to make weather predictable. So, it is not easy to predict rainfall by conventional machine learning approaches. However, several kinds of research have been proposed to predict rainfall by using different computational methods. To accomplish chaotic rainfall prediction system for Bangladesh, in this study, historical data set-driven long short term memory (LSTM) networks method has been used, which overcomes the complexities and chaos-related problems faced by other approaches. The proposed method has three principal phases: (i) The most useful 10 features are chosen from 20 data attributes. (ii) After that, a two-layer LSTM model is designed. (iii) Both conventional machine learning approaches and recent works are compared with the LSTM model. This approach has gained 97.14% accuracy in predicting rainfall (in millimeters), which outperforms the state-of-the-art solutions. Also, this work is a pioneer work to the rainfall prediction system for Bangladesh.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.