Overbounding the effect of uncertain Gauss‐Markov noise in Kalman filtering

S. Langel, Omar García Crespillo, M. Joerger
{"title":"Overbounding the effect of uncertain Gauss‐Markov noise in Kalman filtering","authors":"S. Langel, Omar García Crespillo, M. Joerger","doi":"10.1002/NAVI.419","DOIUrl":null,"url":null,"abstract":"Prior work established a model for uncertain Gauss-Markov (GM) noise that is guaranteed to produce a Kalman filter (KF) covariance matrix that overbounds the estimate error distribution. The derivation was conducted for the continuous-time KF when the GM time constants are only known to reside within specified intervals. This paper first provides a more accessible derivation of the continuous-time result and determines the minimum initial variance of the model. This leads to a new, non-stationary model for uncertain GM noise that we prove yields an overbounding estimate error covariance matrix for both sampled-data and discrete-time systems. The new model is evaluated using covariance analysis for a one-dimensional estimation problem and for an example application in Advanced Receiver Autonomous Integrity Monitoring (ARAIM).","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"68 1","pages":"259-276"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/NAVI.419","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAVI.419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Prior work established a model for uncertain Gauss-Markov (GM) noise that is guaranteed to produce a Kalman filter (KF) covariance matrix that overbounds the estimate error distribution. The derivation was conducted for the continuous-time KF when the GM time constants are only known to reside within specified intervals. This paper first provides a more accessible derivation of the continuous-time result and determines the minimum initial variance of the model. This leads to a new, non-stationary model for uncertain GM noise that we prove yields an overbounding estimate error covariance matrix for both sampled-data and discrete-time systems. The new model is evaluated using covariance analysis for a one-dimensional estimation problem and for an example application in Advanced Receiver Autonomous Integrity Monitoring (ARAIM).
卡尔曼滤波中不确定高斯-马尔可夫噪声的过界效应
先前的工作建立了一个不确定高斯-马尔可夫(GM)噪声模型,该模型保证产生一个卡尔曼滤波(KF)协方差矩阵,该协方差矩阵超过估计误差分布的边界。当GM时间常数只在指定区间内存在时,对连续时间KF进行了推导。本文首先提供了一个更容易理解的连续时间结果的推导,并确定了模型的最小初始方差。这导致了一个新的,不确定GM噪声的非平稳模型,我们证明了该模型对采样数据和离散时间系统都产生了过界估计误差协方差矩阵。利用协方差分析对一维估计问题和先进接收机自主完整性监测(ARAIM)中的实例应用进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信