Benthic Foraminiferal Assemblages from the Laurentian Channel in the Lower Estuary and Gulf of ST. Lawrence, Eastern Canada: Tracers of Bottom-Water Hypoxia
T. Audet, A. de Vernal, A. Mucci, M. Seidenkrantz, C. Hillaire‐Marcel, Vladislav Carnero-Bravo, Y. Gélinas
{"title":"Benthic Foraminiferal Assemblages from the Laurentian Channel in the Lower Estuary and Gulf of ST. Lawrence, Eastern Canada: Tracers of Bottom-Water Hypoxia","authors":"T. Audet, A. de Vernal, A. Mucci, M. Seidenkrantz, C. Hillaire‐Marcel, Vladislav Carnero-Bravo, Y. Gélinas","doi":"10.2113/gsjfr.53.1.57","DOIUrl":null,"url":null,"abstract":"\n Over the past century, an increase in temperatures and a decrease in dissolved oxygen concentrations have been observed in the bottom waters of the Laurentian Channel (LC), throughout the Lower St. Lawrence Estuary (LSLE) and the Gulf of St. Lawrence (GSL), eastern Canada. To document the impact of these changes, we analyzed the benthic foraminiferal assemblages and geochemical signatures of four sediment cores taken in the LC. Radiometric measurements (210Pb, 226Ra, 137Cs) indicate that the studied cores encompass the last 50 years of sedimentation in the LSLE and the last ∼160 years in the GSL. The sedimentary record shows a 60 to 65% decrease in benthic foraminiferal taxonomic diversity in the LC since the 1960s. An accelerated change in the foraminiferal assemblages is observed at approximately the same time at all studied sites, around the late 1990s and the early 2000s, towards populations dominated by the hypoxia-tolerant indicator taxa Brizalina subaenariensis, Eubuliminella exilis, and Globobulimina auriculata. This evolution of assemblages reflects incursions of the hypoxic zone into the western GSL over the last decades. The results of our multivariate analyses highlight the potential of benthic foraminiferal assemblages as a proxy of bottom-water hypoxia.","PeriodicalId":54832,"journal":{"name":"Journal of Foraminiferal Research","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Foraminiferal Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/gsjfr.53.1.57","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Over the past century, an increase in temperatures and a decrease in dissolved oxygen concentrations have been observed in the bottom waters of the Laurentian Channel (LC), throughout the Lower St. Lawrence Estuary (LSLE) and the Gulf of St. Lawrence (GSL), eastern Canada. To document the impact of these changes, we analyzed the benthic foraminiferal assemblages and geochemical signatures of four sediment cores taken in the LC. Radiometric measurements (210Pb, 226Ra, 137Cs) indicate that the studied cores encompass the last 50 years of sedimentation in the LSLE and the last ∼160 years in the GSL. The sedimentary record shows a 60 to 65% decrease in benthic foraminiferal taxonomic diversity in the LC since the 1960s. An accelerated change in the foraminiferal assemblages is observed at approximately the same time at all studied sites, around the late 1990s and the early 2000s, towards populations dominated by the hypoxia-tolerant indicator taxa Brizalina subaenariensis, Eubuliminella exilis, and Globobulimina auriculata. This evolution of assemblages reflects incursions of the hypoxic zone into the western GSL over the last decades. The results of our multivariate analyses highlight the potential of benthic foraminiferal assemblages as a proxy of bottom-water hypoxia.
期刊介绍:
JFR publishes original papers of international interest dealing with the Foraminifera and allied groups of organisms. Review articles are encouraged.