Properties of self-compacting concrete modified with m-sand and spent foundry slag

Q2 Engineering
B. Udayasree, G. Kumar
{"title":"Properties of self-compacting concrete modified with m-sand and spent foundry slag","authors":"B. Udayasree, G. Kumar","doi":"10.1556/1848.2023.00648","DOIUrl":null,"url":null,"abstract":"Due to significant industrialization, many countries have adopted the practice of industrial symbiosis, which involves utilizing the waste produced by one industry as a resource for another industry. The utilization of spent foundry sand (SFS), which is derived from the metal casting industry, poses a significant risk to both the environment and living organisms as a result of the existence of inorganic and organic substances. Nevertheless, this waste material can serve as a valuable resource for the construction sector. The utilization of SFS is significantly restricted due to insufficient comprehension of its concrete performance, despite its extensive range of applications. It is imperative to comprehend the behavior of spent foundry sand in concrete, particularly in relation to achieving a structure that is both strength-efficient and durable. The current study explores the usability of M-sand and spent foundry sand in self-compacting concrete. Reference concrete was produced by replacing river sand with 100% M-sand. M-sand was substituted with spent foundry sand in ratios ranging from 0 to 30%. Compared to the reference mix, SCC's mechanical and durability properties with 20% SFS were better. In comparison to the reference mix, SCC containing 20% SFS had higher mechanical and durability characteristics at 3, 7, 28 days, and 28 days, respectively. With 20% SFS, replacement showed better mechanical properties at all curing ages and better durability performance at 28 days of the curing period.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Due to significant industrialization, many countries have adopted the practice of industrial symbiosis, which involves utilizing the waste produced by one industry as a resource for another industry. The utilization of spent foundry sand (SFS), which is derived from the metal casting industry, poses a significant risk to both the environment and living organisms as a result of the existence of inorganic and organic substances. Nevertheless, this waste material can serve as a valuable resource for the construction sector. The utilization of SFS is significantly restricted due to insufficient comprehension of its concrete performance, despite its extensive range of applications. It is imperative to comprehend the behavior of spent foundry sand in concrete, particularly in relation to achieving a structure that is both strength-efficient and durable. The current study explores the usability of M-sand and spent foundry sand in self-compacting concrete. Reference concrete was produced by replacing river sand with 100% M-sand. M-sand was substituted with spent foundry sand in ratios ranging from 0 to 30%. Compared to the reference mix, SCC's mechanical and durability properties with 20% SFS were better. In comparison to the reference mix, SCC containing 20% SFS had higher mechanical and durability characteristics at 3, 7, 28 days, and 28 days, respectively. With 20% SFS, replacement showed better mechanical properties at all curing ages and better durability performance at 28 days of the curing period.
m砂和废铸造矿渣改性自密实混凝土的性能
由于工业化程度的显著提高,许多国家采用了工业共生的做法,即利用一个行业产生的废物作为另一个行业的资源。废旧铸造砂(SFS)来源于金属铸造工业,由于无机和有机物质的存在,其利用对环境和生物构成重大风险。然而,这种废料可以作为建筑部门的宝贵资源。尽管SFS的应用范围很广,但由于对其具体性能的了解不够,其应用受到了很大的限制。了解废铸造砂在混凝土中的行为是必要的,特别是在实现既高效又耐用的结构方面。本研究探讨了m砂和废铸造砂在自密实混凝土中的可用性。参考混凝土是用100% m砂代替河砂制成的。用废铸造砂代替m砂,比例在0 ~ 30%之间。与参考混合物相比,含20% SFS的SCC的力学和耐久性性能更好。与参考混合料相比,含20% SFS的SCC在3、7、28和28天分别具有更高的力学和耐久性特性。当SFS为20%时,替代材料在所有龄期均表现出较好的力学性能,在28天的养护期表现出较好的耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Review of Applied Sciences and Engineering
International Review of Applied Sciences and Engineering Materials Science-Materials Science (miscellaneous)
CiteScore
2.30
自引率
0.00%
发文量
27
审稿时长
46 weeks
期刊介绍: International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信