Graphical functions in even dimensions

IF 1.2 3区 数学 Q1 MATHEMATICS
M. Borinsky, O. Schnetz
{"title":"Graphical functions in even dimensions","authors":"M. Borinsky, O. Schnetz","doi":"10.4310/CNTP.2022.v16.n3.a3","DOIUrl":null,"url":null,"abstract":". Graphical functions are special position space Feynman integrals, which can be used to calculate Feynman periods and one- or two-scale processes at high loop orders. With graphical functions, renormalization constants have been calculated to loop orders seven and eight in four-dimensional φ 4 theory and to order five in six-dimensional φ 3 theory. In this article we present the theory of graphical functions in even dimensions ≥ 4 with detailed reviews of known properties and full proofs whenever possible.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2022.v16.n3.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

Abstract

. Graphical functions are special position space Feynman integrals, which can be used to calculate Feynman periods and one- or two-scale processes at high loop orders. With graphical functions, renormalization constants have been calculated to loop orders seven and eight in four-dimensional φ 4 theory and to order five in six-dimensional φ 3 theory. In this article we present the theory of graphical functions in even dimensions ≥ 4 with detailed reviews of known properties and full proofs whenever possible.
偶维的图形函数
。图形函数是一种特殊的位置空间费曼积分,可用于计算高环阶的费曼周期和一、二尺度过程。利用图形函数,计算了重整化常数在四维φ 4理论中的七阶和八阶,在六维φ 3理论中的五阶。在这篇文章中,我们提出了≥4偶维图函数的理论,并详细回顾了已知的性质和尽可能完整的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信