{"title":"Increased Motor Cortex Excitability for Concealed Visual Information","authors":"A. Hadar, A. Lazarovits, K. Yarrow","doi":"10.1027/0269-8803/a000230","DOIUrl":null,"url":null,"abstract":"Abstract. Deceptive behavior involves complex neural processes involving the primary motor cortex. The dynamics of this motor cortex excitability prior to lying are still not well understood. We sought to examine whether corticospinal excitability can be used to suggest the presence of deliberately concealed information in a modified version of the guilty knowledge test (GKT). Participants pressed keys to either truthfully or deceitfully indicate their familiarity with a series of faces. Motor-evoked potentials (MEPs) were recorded during response preparation to measure muscle-specific neural excitability. We hypothesized that MEPs would increase during the deceptive condition not only in the lie-telling finger but also in the suppressed truth-telling finger. We report a group-level increase in overall corticospinal excitability 300 ms following stimulus onset during the deceptive condition, without specific activation of the neural representation of the truth-telling finger. We discuss cognitive processes, particularly response conflict and/or automated responses to familiar stimuli, which may drive the observed nonspecific increase of motor excitability in deception.","PeriodicalId":50075,"journal":{"name":"Journal of Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/0269-8803/a000230","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Deceptive behavior involves complex neural processes involving the primary motor cortex. The dynamics of this motor cortex excitability prior to lying are still not well understood. We sought to examine whether corticospinal excitability can be used to suggest the presence of deliberately concealed information in a modified version of the guilty knowledge test (GKT). Participants pressed keys to either truthfully or deceitfully indicate their familiarity with a series of faces. Motor-evoked potentials (MEPs) were recorded during response preparation to measure muscle-specific neural excitability. We hypothesized that MEPs would increase during the deceptive condition not only in the lie-telling finger but also in the suppressed truth-telling finger. We report a group-level increase in overall corticospinal excitability 300 ms following stimulus onset during the deceptive condition, without specific activation of the neural representation of the truth-telling finger. We discuss cognitive processes, particularly response conflict and/or automated responses to familiar stimuli, which may drive the observed nonspecific increase of motor excitability in deception.
期刊介绍:
The Journal of Psychophysiology is an international periodical that presents original research in all fields employing psychophysiological measures on human subjects. Contributions are published from psychology, physiology, clinical psychology, psychiatry, neurosciences, and pharmacology. Communications on new psychophysiological methods are presented as well. Space is also allocated for letters to the editor and book reviews. Occasional special issues are devoted to important current issues in psychophysiology.