{"title":"In-situ visualization of hydrogen atom distribution at micro-indentation in a carbon steel by scanning Kelvin probe force microscopy","authors":"Yuan Li, Y. Cheng","doi":"10.1515/corrrev-2022-0108","DOIUrl":null,"url":null,"abstract":"Abstract In this work, a scanning Kelvin probe force microscope was used to in-situ visualize distribution of hydrogen atoms at micro-indentation and metallurgical phases contained in a carbon steel. Topographic profiles and Volta potentials of the steel upon various times of hydrogen-charging were measured. The hydrogen atom distribution at the micro-indentation was analyzed. Results demonstrate that the micro-indentation can serve as a preferential site to accumulate hydrogen atoms. Particularly, the vertex of the indention shows the greatest hydrogen atom enrichment, while the indentation bottom possesses a slightly lower hydrogen atom concentration. More hydrogen atoms accumulate in ferrite than in pearlite in the steel.","PeriodicalId":10721,"journal":{"name":"Corrosion Reviews","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/corrrev-2022-0108","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this work, a scanning Kelvin probe force microscope was used to in-situ visualize distribution of hydrogen atoms at micro-indentation and metallurgical phases contained in a carbon steel. Topographic profiles and Volta potentials of the steel upon various times of hydrogen-charging were measured. The hydrogen atom distribution at the micro-indentation was analyzed. Results demonstrate that the micro-indentation can serve as a preferential site to accumulate hydrogen atoms. Particularly, the vertex of the indention shows the greatest hydrogen atom enrichment, while the indentation bottom possesses a slightly lower hydrogen atom concentration. More hydrogen atoms accumulate in ferrite than in pearlite in the steel.
期刊介绍:
Corrosion Reviews is an international bimonthly journal devoted to critical reviews and, to a lesser extent, outstanding original articles that are key to advancing the understanding and application of corrosion science and engineering in the service of society. Papers may be of a theoretical, experimental or practical nature, provided that they make a significant contribution to knowledge in the field.