{"title":"Hadamard expansions for powers of causal Green’s operators and “resolvents”","authors":"Lennart Ronge","doi":"10.1007/s10455-023-09921-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Hadamard expansion describes the singularity structure of Green’s operators associated with a normally hyperbolic operator <i>P</i> in terms of Riesz distributions (fundamental solutions on Minkowski space, transported to the manifold via the exponential map) and Hadamard coefficients (smooth sections in two variables, corresponding to the heat Kernel coefficients in the Riemannian case). In this paper, we derive an asymptotic expansion analogous to the Hadamard expansion for powers of advanced/retarded Green’s operators associated with <i>P</i>, as well as expansions for advanced/retarded Green’s operators associated with <span>\\(P-z\\)</span> for <span>\\(z\\in \\mathbb {C}\\)</span>. These expansions involve the same Hadamard coefficients as the original Hadamard expansion, as well as the same or analogous (with built-in <i>z</i>-dependence) Riesz distributions.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"64 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09921-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09921-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Hadamard expansion describes the singularity structure of Green’s operators associated with a normally hyperbolic operator P in terms of Riesz distributions (fundamental solutions on Minkowski space, transported to the manifold via the exponential map) and Hadamard coefficients (smooth sections in two variables, corresponding to the heat Kernel coefficients in the Riemannian case). In this paper, we derive an asymptotic expansion analogous to the Hadamard expansion for powers of advanced/retarded Green’s operators associated with P, as well as expansions for advanced/retarded Green’s operators associated with \(P-z\) for \(z\in \mathbb {C}\). These expansions involve the same Hadamard coefficients as the original Hadamard expansion, as well as the same or analogous (with built-in z-dependence) Riesz distributions.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.