Hadamard expansions for powers of causal Green’s operators and “resolvents”

Pub Date : 2023-08-29 DOI:10.1007/s10455-023-09921-0
Lennart Ronge
{"title":"Hadamard expansions for powers of causal Green’s operators and “resolvents”","authors":"Lennart Ronge","doi":"10.1007/s10455-023-09921-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Hadamard expansion describes the singularity structure of Green’s operators associated with a normally hyperbolic operator <i>P</i> in terms of Riesz distributions (fundamental solutions on Minkowski space, transported to the manifold via the exponential map) and Hadamard coefficients (smooth sections in two variables, corresponding to the heat Kernel coefficients in the Riemannian case). In this paper, we derive an asymptotic expansion analogous to the Hadamard expansion for powers of advanced/retarded Green’s operators associated with <i>P</i>, as well as expansions for advanced/retarded Green’s operators associated with <span>\\(P-z\\)</span> for <span>\\(z\\in \\mathbb {C}\\)</span>. These expansions involve the same Hadamard coefficients as the original Hadamard expansion, as well as the same or analogous (with built-in <i>z</i>-dependence) Riesz distributions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09921-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09921-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Hadamard expansion describes the singularity structure of Green’s operators associated with a normally hyperbolic operator P in terms of Riesz distributions (fundamental solutions on Minkowski space, transported to the manifold via the exponential map) and Hadamard coefficients (smooth sections in two variables, corresponding to the heat Kernel coefficients in the Riemannian case). In this paper, we derive an asymptotic expansion analogous to the Hadamard expansion for powers of advanced/retarded Green’s operators associated with P, as well as expansions for advanced/retarded Green’s operators associated with \(P-z\) for \(z\in \mathbb {C}\). These expansions involve the same Hadamard coefficients as the original Hadamard expansion, as well as the same or analogous (with built-in z-dependence) Riesz distributions.

分享
查看原文
因果格林算子幂的Hadamard展开式与“解”
Hadamard展开描述了与正双曲算子P相关的Green算子的奇异性结构,用Riesz分布(Minkowski空间上的基本解,通过指数映射传输到流形)和Hadamard系数(两个变量中的光滑部分,对应于黎曼情况下的热核系数)表示。在本文中,我们导出了与P相关的高级/延迟Green算子的幂的类似于Hadamard展开式的渐近展开式,以及与\(P-z\)相关的高级或延迟Green算子对\(z\In\mathbb{C}\)的展开式。这些展开涉及与原始Hadamard展开相同的Hadamard系数,以及相同或类似的(具有内置的z依赖性)Riesz分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信