{"title":"Developement of reliable accelerated corrosion tests for aluminum alloys used in the aerospace industry","authors":"F. Peltier, D. Thierry","doi":"10.5006/4356","DOIUrl":null,"url":null,"abstract":"Aluminum alloys are not immune to corrosion which can take the form of localized corrosion. Thus, the assessment of the corrosion behavior of aluminum alloys under atmospheric conditions is a major topic for the aerospace industry. One major difficulty in this task is the lack of robust and reliable accelerated corrosion test(s) in this field. Indeed, several tests as the Neutral Salt Spray test (ASTM B117) are used to assess the general corrosion resistance of aluminum, but these tests were not developed specifically for the aerospace industry and are not representative of service conditions. The aim of the present study was to compare the results of various accelerated corrosion tests conditions (ASTM B117, VDA 233-102, Volvo STD 423-0014) with newly developed test conditions. Hence different accelerated corrosion tests were designed by varying several parameters in the Volvo STD 423-0014 such as the salt concentration, the time of wetness and the relative humidity. The results obtained on 8 aluminum alloys (2xxx, 7xxx and Al-Li alloys) were then compared to marine exposures. From the results, one test provides the same type of corrosion attacks on the different alloys as under atmospheric exposures in the marine site and a good acceleration factor.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4356","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum alloys are not immune to corrosion which can take the form of localized corrosion. Thus, the assessment of the corrosion behavior of aluminum alloys under atmospheric conditions is a major topic for the aerospace industry. One major difficulty in this task is the lack of robust and reliable accelerated corrosion test(s) in this field. Indeed, several tests as the Neutral Salt Spray test (ASTM B117) are used to assess the general corrosion resistance of aluminum, but these tests were not developed specifically for the aerospace industry and are not representative of service conditions. The aim of the present study was to compare the results of various accelerated corrosion tests conditions (ASTM B117, VDA 233-102, Volvo STD 423-0014) with newly developed test conditions. Hence different accelerated corrosion tests were designed by varying several parameters in the Volvo STD 423-0014 such as the salt concentration, the time of wetness and the relative humidity. The results obtained on 8 aluminum alloys (2xxx, 7xxx and Al-Li alloys) were then compared to marine exposures. From the results, one test provides the same type of corrosion attacks on the different alloys as under atmospheric exposures in the marine site and a good acceleration factor.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.