{"title":"Peeling-off behavior of wave equation in the Vaidya spacetime","authors":"Armand Coudray","doi":"10.1142/s021989162350011x","DOIUrl":null,"url":null,"abstract":"We study the peeling for the wave equation on the Vaidya spacetime following the approach developed by Mason and Nicolas in Mason–Nicolas 2009. The idea is to encode the regularity at null infinity of the rescaled field, characterized by Sobolev-type norms, in terms of corresponding function spaces of initial data. All function spaces are obtained from energy fluxes associated with an observer constructed from the Morawetz vector field on Minkowski spacetime. We combine conformal techniques and energy estimates to obtain the optimal classes of initial data ensuring a given regularity of the rescaled field. The classes of data are equivalent to those obtained on Minkowski and Schwarzschild spacetimes in that they impose the same decay at infinity and regularity.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021989162350011x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the peeling for the wave equation on the Vaidya spacetime following the approach developed by Mason and Nicolas in Mason–Nicolas 2009. The idea is to encode the regularity at null infinity of the rescaled field, characterized by Sobolev-type norms, in terms of corresponding function spaces of initial data. All function spaces are obtained from energy fluxes associated with an observer constructed from the Morawetz vector field on Minkowski spacetime. We combine conformal techniques and energy estimates to obtain the optimal classes of initial data ensuring a given regularity of the rescaled field. The classes of data are equivalent to those obtained on Minkowski and Schwarzschild spacetimes in that they impose the same decay at infinity and regularity.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.