{"title":"(0,1)-matrices and Discrepancy","authors":"LeRoy B. Beasley","doi":"10.13001/ela.2021.5033","DOIUrl":null,"url":null,"abstract":" Let $m$ and $n$ be positive integers, and let $R =(r_1, \\ldots, r_m)$ and $S =(s_1,\\ldots, s_n)$ be nonnegative integral vectors. Let $A(R,S)$ be the set of all $m \\times n$ $(0,1)$-matrices with row sum vector $R$ and column vector $S$. Let $R$ and $S$ be nonincreasing, and let $F(R)$ be the $m \\times n$ $(0,1)$-matrix where for each $i$, the $i^{th}$ row of $F(R,S)$ consists of $r_i$ 1's followed by $n-r_i$ 0's. Let $A\\in A(R,S)$. The discrepancy of A, $disc(A)$, is the number of positions in which $F(R)$ has a 1 and $A$ has a 0. In this paper, we investigate the possible discrepancy of $A^t$ versus the discrepancy of $A$. We show that if the discrepancy of $A$ is $\\ell$, then the discrepancy of the transpose of $A$ is at least $\\frac{\\ell}{2}$ and at most $2\\ell$. These bounds are tight.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.5033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let $m$ and $n$ be positive integers, and let $R =(r_1, \ldots, r_m)$ and $S =(s_1,\ldots, s_n)$ be nonnegative integral vectors. Let $A(R,S)$ be the set of all $m \times n$ $(0,1)$-matrices with row sum vector $R$ and column vector $S$. Let $R$ and $S$ be nonincreasing, and let $F(R)$ be the $m \times n$ $(0,1)$-matrix where for each $i$, the $i^{th}$ row of $F(R,S)$ consists of $r_i$ 1's followed by $n-r_i$ 0's. Let $A\in A(R,S)$. The discrepancy of A, $disc(A)$, is the number of positions in which $F(R)$ has a 1 and $A$ has a 0. In this paper, we investigate the possible discrepancy of $A^t$ versus the discrepancy of $A$. We show that if the discrepancy of $A$ is $\ell$, then the discrepancy of the transpose of $A$ is at least $\frac{\ell}{2}$ and at most $2\ell$. These bounds are tight.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.