The Feynman–Kac formula and Harnack inequality for degenerate diffusions

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
C. Epstein, C. Pop
{"title":"The Feynman–Kac formula and Harnack inequality for degenerate diffusions","authors":"C. Epstein, C. Pop","doi":"10.1214/16-AOP1138","DOIUrl":null,"url":null,"abstract":"We study various probabilistic and analytical properties of a class of degenerate diffusion operators arising in population genetics, the so-called generalized Kimura diffusion operators Epstein and Mazzeo [SIAM J. Math. Anal. 42 (2010) 568–608; Degenerate Diffusion Operators Arising in Population Biology (2013) Princeton University Press; Applied Mathematics Research Express (2016)]. Our main results are a stochastic representation of weak solutions to a degenerate parabolic equation with singular lower-order coefficients and the proof of the scale-invariant Harnack inequality for nonnegative solutions to the Kimura parabolic equation. The stochastic representation of solutions that we establish is a considerable generalization of the classical results on Feynman–Kac formulas concerning the assumptions on the degeneracy of the diffusion matrix, the boundedness of the drift coefficients and the a priori regularity of the weak solutions.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/16-AOP1138","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AOP1138","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

Abstract

We study various probabilistic and analytical properties of a class of degenerate diffusion operators arising in population genetics, the so-called generalized Kimura diffusion operators Epstein and Mazzeo [SIAM J. Math. Anal. 42 (2010) 568–608; Degenerate Diffusion Operators Arising in Population Biology (2013) Princeton University Press; Applied Mathematics Research Express (2016)]. Our main results are a stochastic representation of weak solutions to a degenerate parabolic equation with singular lower-order coefficients and the proof of the scale-invariant Harnack inequality for nonnegative solutions to the Kimura parabolic equation. The stochastic representation of solutions that we establish is a considerable generalization of the classical results on Feynman–Kac formulas concerning the assumptions on the degeneracy of the diffusion matrix, the boundedness of the drift coefficients and the a priori regularity of the weak solutions.
简并扩散的费曼-卡茨公式和哈纳克不等式
本文研究了种群遗传学中出现的一类退化扩散算子的各种概率和解析性质,即广义Kimura扩散算子Epstein和Mazzeo [SIAM J. Math]。肛门42 (2010)568-608;种群生物学中的退化扩散算子(2013)普林斯顿大学出版社;应用数学研究快报(2016)。我们的主要成果是退化低阶系数奇异抛物方程弱解的随机表示和Kimura抛物方程非负解的尺度不变Harnack不等式的证明。我们所建立的解的随机表示是对经典费曼-卡茨公式关于扩散矩阵的简并性、漂移系数的有界性和弱解的先验正则性等假设的结果的一个相当大的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信