{"title":"Reduced basis methods for time-dependent problems","authors":"J. Hesthaven, C. Pagliantini, G. Rozza","doi":"10.1017/S0962492922000058","DOIUrl":null,"url":null,"abstract":"Numerical simulation of parametrized differential equations is of crucial importance in the study of real-world phenomena in applied science and engineering. Computational methods for real-time and many-query simulation of such problems often require prohibitively high computational costs to achieve sufficiently accurate numerical solutions. During the last few decades, model order reduction has proved successful in providing low-complexity high-fidelity surrogate models that allow rapid and accurate simulations under parameter variation, thus enabling the numerical simulation of increasingly complex problems. However, many challenges remain to secure the robustness and efficiency needed for the numerical simulation of nonlinear time-dependent problems. The purpose of this article is to survey the state of the art of reduced basis methods for time-dependent problems and draw together recent advances in three main directions. First, we discuss structure-preserving reduced order models designed to retain key physical properties of the continuous problem. Second, we survey localized and adaptive methods based on nonlinear approximations of the solution space. Finally, we consider data-driven techniques based on non-intrusive reduced order models in which an approximation of the map between parameter space and coefficients of the reduced basis is learned. Within each class of methods, we describe different approaches and provide a comparative discussion that lends insights to advantages, disadvantages and potential open questions.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"31 1","pages":"265 - 345"},"PeriodicalIF":16.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492922000058","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28
Abstract
Numerical simulation of parametrized differential equations is of crucial importance in the study of real-world phenomena in applied science and engineering. Computational methods for real-time and many-query simulation of such problems often require prohibitively high computational costs to achieve sufficiently accurate numerical solutions. During the last few decades, model order reduction has proved successful in providing low-complexity high-fidelity surrogate models that allow rapid and accurate simulations under parameter variation, thus enabling the numerical simulation of increasingly complex problems. However, many challenges remain to secure the robustness and efficiency needed for the numerical simulation of nonlinear time-dependent problems. The purpose of this article is to survey the state of the art of reduced basis methods for time-dependent problems and draw together recent advances in three main directions. First, we discuss structure-preserving reduced order models designed to retain key physical properties of the continuous problem. Second, we survey localized and adaptive methods based on nonlinear approximations of the solution space. Finally, we consider data-driven techniques based on non-intrusive reduced order models in which an approximation of the map between parameter space and coefficients of the reduced basis is learned. Within each class of methods, we describe different approaches and provide a comparative discussion that lends insights to advantages, disadvantages and potential open questions.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.