Long-Duration Test of Coaxial Low-Energy Surface Flashover Ignitor

IF 1.7 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Yunping Zhang, Lee Organski, A. Shashurin, K. Ostrikov
{"title":"Long-Duration Test of Coaxial Low-Energy Surface Flashover Ignitor","authors":"Yunping Zhang, Lee Organski, A. Shashurin, K. Ostrikov","doi":"10.2514/1.b39071","DOIUrl":null,"url":null,"abstract":"A coaxial low-energy surface flashover (LESF) ignitor for CubeSat electric propulsion systems was developed and tested. The ignitor features a coaxial geometry with copper electrodes directly bonded to the inner and outer surfaces of the alumina ceramic tubular insulator. The ignitor proved to be operational throughout (and after) an extended duration test of 10 million pulses. Characterization of a single LESF event via intensified charge-coupled device fast photography showed that the initial plasma was generated along the insulator surface, while the later plasma production was governed by the column attached to the copper electrodes. The plasma plume propagated primarily perpendicular to the insulator surface at around [Formula: see text]. Further investigation on the erosion of ceramic insulator and copper electrodes via energy-dispersive x-ray spectroscopy analysis of a witness plate exposed to LESF and scanning electron microscopy observation of the electrodes revealed that the ceramic erosion ([Formula: see text] molecules per pulse) was predominant over electrodes erosion ([Formula: see text] atoms per pulse or [Formula: see text]).","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.b39071","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

A coaxial low-energy surface flashover (LESF) ignitor for CubeSat electric propulsion systems was developed and tested. The ignitor features a coaxial geometry with copper electrodes directly bonded to the inner and outer surfaces of the alumina ceramic tubular insulator. The ignitor proved to be operational throughout (and after) an extended duration test of 10 million pulses. Characterization of a single LESF event via intensified charge-coupled device fast photography showed that the initial plasma was generated along the insulator surface, while the later plasma production was governed by the column attached to the copper electrodes. The plasma plume propagated primarily perpendicular to the insulator surface at around [Formula: see text]. Further investigation on the erosion of ceramic insulator and copper electrodes via energy-dispersive x-ray spectroscopy analysis of a witness plate exposed to LESF and scanning electron microscopy observation of the electrodes revealed that the ceramic erosion ([Formula: see text] molecules per pulse) was predominant over electrodes erosion ([Formula: see text] atoms per pulse or [Formula: see text]).
同轴低能量表面闪络点火器的长时间试验
研制并测试了用于CubeSat电力推进系统的同轴低能表面闪络(LESF)点火器。点火器具有同轴几何形状,铜电极直接连接到氧化铝陶瓷管状绝缘体的内表面和外表面。点火器在1000万脉冲的延长持续时间测试期间(以及之后)被证明是可操作的。通过增强电荷耦合器件快速摄影对单个LESF事件的表征表明,初始等离子体是沿着绝缘体表面产生的,而随后的等离子体产生由连接到铜电极的柱控制。等离子体羽流主要在附近垂直于绝缘体表面传播[公式:见正文]。通过对暴露于LESF的见证板进行能量色散x射线光谱分析和对电极进行扫描电子显微镜观察,对陶瓷绝缘体和铜电极的侵蚀进行了进一步研究,结果表明,陶瓷侵蚀([公式:见正文]分子/脉冲)比电极侵蚀([方程式:见正文]原子/脉冲或[公式:见正文])。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Propulsion and Power
Journal of Propulsion and Power 工程技术-工程:宇航
CiteScore
4.20
自引率
21.10%
发文量
97
审稿时长
6.5 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信