{"title":"Elastic impedance inversion incorporating fusion initial model and kernel Fisher discriminant analysis approach","authors":"Weihua Jia , Zhaoyun Zong , Tianjun Lan","doi":"10.1016/j.petrol.2022.111235","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic inversion is a significant technique for estimating petroleum reservoir<span><span> parameters. The low frequency component of the initial model represents the geological background information, which plays an important role in the seismic inversion. It is challenging to precisely depict the actual geological model in seismic inversion because of the inherent velocity-depth ambiguity. Therefore, the initial model which is closer to genuine geological backdrop is essential. We propose a workflow which estimates a fusion initial model based on data fusion algorithms. It is well known that seismic </span>facies analysis<span> can provide more low-frequency information about the geological background. For example, the boundaries of sedimentary bodies can be represented by seismic facies classification data. We utilize a combination of the seismic facies classification data and well curves interpolation initial models to accurately invert the special geological body with the support of a feature-level fusion algorithm. Then, a practical pre-stack seismic inversion method is implemented, and a field data example further demonstrates its applicability and steadiness in seismic inversion.</span></span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111235"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010877","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
Seismic inversion is a significant technique for estimating petroleum reservoir parameters. The low frequency component of the initial model represents the geological background information, which plays an important role in the seismic inversion. It is challenging to precisely depict the actual geological model in seismic inversion because of the inherent velocity-depth ambiguity. Therefore, the initial model which is closer to genuine geological backdrop is essential. We propose a workflow which estimates a fusion initial model based on data fusion algorithms. It is well known that seismic facies analysis can provide more low-frequency information about the geological background. For example, the boundaries of sedimentary bodies can be represented by seismic facies classification data. We utilize a combination of the seismic facies classification data and well curves interpolation initial models to accurately invert the special geological body with the support of a feature-level fusion algorithm. Then, a practical pre-stack seismic inversion method is implemented, and a field data example further demonstrates its applicability and steadiness in seismic inversion.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.