{"title":"Radial ballistic-diffusive heat conduction in nanoscale","authors":"Han-Ling Li, B. Cao","doi":"10.1080/15567265.2018.1520763","DOIUrl":null,"url":null,"abstract":"ABSTRACT Heat conduction in radius direction is of great importance to the use of two-dimensional materials and experiments. In this paper, radial ballistic-diffusive heat conduction in nanoscale is investigated by the phonon Monte Carlo (MC) method and phonon Boltzmann transport equation. We find that owing to the two-dimensional nature, the radial heat transport is dominated by two parameters, including the Knudsen number (Kn) and the radius ratio of the two concentric boundaries, the former of which is defined as the ratio of the phonon mean-free-path to the distance of the two boundaries. Compared with the one-dimensional cases, radial ballistic transport not only leads to boundary temperature jumps and the size effect of the effective thermal conductivity, but also results in a nonlinear temperature profile in logarithm radius coordinate, a difference of the inner and outer boundary temperature jumps, a stronger size effect, and a nonuniform local thermal conductivity within the system. When the value of Kn is far less than one, diffusive transport predominates and the effect of the radius ratio is negligible. Whereas, when Kn is comparable to or larger than one, the intensity of ballistic transport compared to diffusive transport will be increased significantly as the radius ratio decreases. In addition, the models for the temperature profile and the effective thermal conductivity are derived by an interpolation of the limit solutions and modification of the previous model, respectively. The good agreements with the phonon MC simulations demonstrate their validity.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"10 - 24"},"PeriodicalIF":2.7000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1520763","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1520763","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 14
Abstract
ABSTRACT Heat conduction in radius direction is of great importance to the use of two-dimensional materials and experiments. In this paper, radial ballistic-diffusive heat conduction in nanoscale is investigated by the phonon Monte Carlo (MC) method and phonon Boltzmann transport equation. We find that owing to the two-dimensional nature, the radial heat transport is dominated by two parameters, including the Knudsen number (Kn) and the radius ratio of the two concentric boundaries, the former of which is defined as the ratio of the phonon mean-free-path to the distance of the two boundaries. Compared with the one-dimensional cases, radial ballistic transport not only leads to boundary temperature jumps and the size effect of the effective thermal conductivity, but also results in a nonlinear temperature profile in logarithm radius coordinate, a difference of the inner and outer boundary temperature jumps, a stronger size effect, and a nonuniform local thermal conductivity within the system. When the value of Kn is far less than one, diffusive transport predominates and the effect of the radius ratio is negligible. Whereas, when Kn is comparable to or larger than one, the intensity of ballistic transport compared to diffusive transport will be increased significantly as the radius ratio decreases. In addition, the models for the temperature profile and the effective thermal conductivity are derived by an interpolation of the limit solutions and modification of the previous model, respectively. The good agreements with the phonon MC simulations demonstrate their validity.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.