Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve

IF 1 Q1 MATHEMATICS
Idowu Esther IJaodoro, E. Thiam
{"title":"Influence of an L^{p}-perturbation on Hardy-Sobolev inequality with singularity a curve","authors":"Idowu Esther IJaodoro, E. Thiam","doi":"10.7494/OPMATH.2021.41.2.187","DOIUrl":null,"url":null,"abstract":"We consider a bounded domain $\\Omega$ of $\\mathbb{R}^N$, $N\\ge3$, $h$ and $b$ continuous functions on $\\Omega$. Let $\\Gamma$ be a closed curve contained in $\\Omega$. We study existence of positive solutions $u \\in H^1_0\\left(\\Omega\\right)$ to the perturbed Hardy-Sobolev equation: $$ -\\Delta u+h u+bu^{1+\\delta}=\\rho^{-\\sigma}_\\Gamma u^{2^*_\\sigma-1} \\qquad \\textrm{ in } \\Omega, $$ where $2^*_\\sigma:=\\frac{2(N-\\sigma)}{N-2}$ is the critical Hardy-Sobolev exponent, $\\sigma\\in [0,2)$, $0<\\delta<\\frac{4}{N-2}$ and $\\rho_\\Gamma$ is the distance function to $\\Gamma$. We show that the existence of minimizers does not depend on the local geometry of $\\Gamma$ nor on the potential $h$. For $N=3$, the existence of ground-state solution may depends on the trace of the regular part of the Green function of $-\\Delta+h$ and or on $b$. This is due to the perturbative term of order ${1+\\delta}$.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"41 1","pages":"187-204"},"PeriodicalIF":1.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.2.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a bounded domain $\Omega$ of $\mathbb{R}^N$, $N\ge3$, $h$ and $b$ continuous functions on $\Omega$. Let $\Gamma$ be a closed curve contained in $\Omega$. We study existence of positive solutions $u \in H^1_0\left(\Omega\right)$ to the perturbed Hardy-Sobolev equation: $$ -\Delta u+h u+bu^{1+\delta}=\rho^{-\sigma}_\Gamma u^{2^*_\sigma-1} \qquad \textrm{ in } \Omega, $$ where $2^*_\sigma:=\frac{2(N-\sigma)}{N-2}$ is the critical Hardy-Sobolev exponent, $\sigma\in [0,2)$, $0<\delta<\frac{4}{N-2}$ and $\rho_\Gamma$ is the distance function to $\Gamma$. We show that the existence of minimizers does not depend on the local geometry of $\Gamma$ nor on the potential $h$. For $N=3$, the existence of ground-state solution may depends on the trace of the regular part of the Green function of $-\Delta+h$ and or on $b$. This is due to the perturbative term of order ${1+\delta}$.
L^{p}-摄动对曲线奇异的Hardy-Sobolev不等式的影响
我们考虑$\mathbb{R}^N$,$N\ge3$,$h$和$b$上连续函数的有界域$\Omega$。设$\Gamma$是包含在$\Omega$中的闭合曲线。我们研究了扰动Hardy-Sobolev方程的正解$u\in H^1_0\left(\Omega\right)$的存在性:$$-\Deltau+hu+bu^{1+\Delta}=\rho^{-\sigma}_\Gamma u^{2^*_\sigma-1}\qquad\textrm{in}\Omega,$$其中$2^*-\sigma:=\frac{2(N-\sigma)},$\sigma\in[0,2)$,$0<\delta<\frac{4}{N-2}$和$\rho_\Gamma$是到$\Gamma$的距离函数。我们证明了极小值的存在不取决于$\Gamma$的局部几何,也不取决于潜在的$h$。对于$N=3$,基态解的存在性可能取决于$-\Delta+h$的Green函数的正则部分的迹和/或$b$。这是由于${1+\delta}$阶的扰动项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信