{"title":"Geometry of the probability simplex and its connection to the maximum entropy method","authors":"H. Gzyl, F. Nielsen","doi":"10.2478/jamsi-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract The use of geometrical methods in statistics has a long and rich history highlighting many different aspects. These methods are usually based on a Riemannian structure defined on the space of parameters that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not through the parameters that characterize some given family of probabilities. For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic interpretation of Jaynes’ method of maximum entropy.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"16 1","pages":"25 - 35"},"PeriodicalIF":0.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract The use of geometrical methods in statistics has a long and rich history highlighting many different aspects. These methods are usually based on a Riemannian structure defined on the space of parameters that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not through the parameters that characterize some given family of probabilities. For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic interpretation of Jaynes’ method of maximum entropy.