Geometry of the probability simplex and its connection to the maximum entropy method

IF 0.3 Q4 MATHEMATICS, APPLIED
H. Gzyl, F. Nielsen
{"title":"Geometry of the probability simplex and its connection to the maximum entropy method","authors":"H. Gzyl, F. Nielsen","doi":"10.2478/jamsi-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract The use of geometrical methods in statistics has a long and rich history highlighting many different aspects. These methods are usually based on a Riemannian structure defined on the space of parameters that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not through the parameters that characterize some given family of probabilities. For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic interpretation of Jaynes’ method of maximum entropy.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"16 1","pages":"25 - 35"},"PeriodicalIF":0.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The use of geometrical methods in statistics has a long and rich history highlighting many different aspects. These methods are usually based on a Riemannian structure defined on the space of parameters that characterize a family of probabilities. In this paper, we consider the finite dimensional case but the basic ideas can be extended similarly to the infinite-dimensional case. Our aim is to understand exponential families of probabilities on a finite set from an intrinsic geometrical point of view and not through the parameters that characterize some given family of probabilities. For that purpose, we consider a Riemannian geometry defined on the set of positive vectors in a finite-dimensional space. In this space, the probabilities on a finite set comprise a submanifold in which exponential families correspond to geodesic surfaces. We shall also obtain a geometric/dynamic interpretation of Jaynes’ method of maximum entropy.
概率单纯形的几何及其与最大熵法的联系
几何方法在统计学中的应用有着悠久而丰富的历史,突出了许多不同的方面。这些方法通常基于黎曼结构,该结构定义在表征概率族的参数空间上。在本文中,我们考虑有限维情况,但基本思想可以类似地推广到无限维情况。我们的目标是从内在的几何角度来理解有限集合上的指数族概率,而不是通过表征某些给定概率族的参数。为此,我们考虑在有限维空间中的正向量集合上定义的黎曼几何。在这个空间中,有限集合上的概率由子流形组成,其中指数族对应于测地线表面。我们还将得到Jaynes最大熵方法的几何/动态解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信