{"title":"The density matrix in the non-Hermitian approach to open quantum system dynamics","authors":"A. Sergi","doi":"10.1478/AAPP.97S2A11","DOIUrl":null,"url":null,"abstract":"In this paper we review an approach to the dynamics of open quantum systems based of non-Hermitian Hamiltonians. Non-Hermitian Hamiltonians arise naturally when one wish to study a subsystem interacting with a continuum of states. Moreover, quantum subsystems with probability sinks or sources are naturally described by non-Hermitian Hamiltonians. Herein, we discuss a non-Hermitian formalism based on the density matrix. We show both how to derive the equations of motion of the density matrix and how to define statistical averages properly. It turns out that the laws of evolution of the normalized density matrix are intrinsically non-linear. We also show how to define correlation functions and a non-Hermitian entropy with a non zero production rate. The formalism has been generalized to the case of hybrid quantum-classical systems using a partial Wigner representation. The equations of motion and the statistical averages are defined analogously to the pure quantum case. However, the definition of the entropy requires to introduce a non-Hermitian linear entropy functional.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.97S2A11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we review an approach to the dynamics of open quantum systems based of non-Hermitian Hamiltonians. Non-Hermitian Hamiltonians arise naturally when one wish to study a subsystem interacting with a continuum of states. Moreover, quantum subsystems with probability sinks or sources are naturally described by non-Hermitian Hamiltonians. Herein, we discuss a non-Hermitian formalism based on the density matrix. We show both how to derive the equations of motion of the density matrix and how to define statistical averages properly. It turns out that the laws of evolution of the normalized density matrix are intrinsically non-linear. We also show how to define correlation functions and a non-Hermitian entropy with a non zero production rate. The formalism has been generalized to the case of hybrid quantum-classical systems using a partial Wigner representation. The equations of motion and the statistical averages are defined analogously to the pure quantum case. However, the definition of the entropy requires to introduce a non-Hermitian linear entropy functional.
期刊介绍:
This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.