Elasto-hydrodynamic analysis of reciprocating piston seals with micro-asperities on cylinder surface

IF 1.6 Q4 MATERIALS SCIENCE, COATINGS & FILMS
Zhang Shouyuan
{"title":"Elasto-hydrodynamic analysis of reciprocating piston seals with micro-asperities on cylinder surface","authors":"Zhang Shouyuan","doi":"10.1080/17515831.2020.1730128","DOIUrl":null,"url":null,"abstract":"ABSTRACT The reciprocating piston seals are crucial parts in the hydraulic system, which are widely used in aerospace and military industry. A direct fluid–structure coupling method with high efficiency is proposed for solving the transient elaso-hydrodynamic-lubrication problem in the hydropneumatic suspension reciprocating piston seal system. A detailed three-dimensional fluid–structure coupling model is built using finite element discretization. Material tests are carried out to obtain the parameters of the third-order Ogden constitutive model of the rubber O-ring. The sealing performance and friction force of the sealing system are analysed for different piston speed. The critical speed from mixed lubrication to full-film lubrication is obtained. Three different micro-asperity geometries on cylinder surface are researched for their influence on piston sealing and lubrication performance.","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17515831.2020.1730128","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2020.1730128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The reciprocating piston seals are crucial parts in the hydraulic system, which are widely used in aerospace and military industry. A direct fluid–structure coupling method with high efficiency is proposed for solving the transient elaso-hydrodynamic-lubrication problem in the hydropneumatic suspension reciprocating piston seal system. A detailed three-dimensional fluid–structure coupling model is built using finite element discretization. Material tests are carried out to obtain the parameters of the third-order Ogden constitutive model of the rubber O-ring. The sealing performance and friction force of the sealing system are analysed for different piston speed. The critical speed from mixed lubrication to full-film lubrication is obtained. Three different micro-asperity geometries on cylinder surface are researched for their influence on piston sealing and lubrication performance.
气缸表面微凸体往复活塞密封的弹流力学分析
往复式活塞密封是液压系统中的关键部件,在航空航天、军工等领域有着广泛的应用。针对油气悬架往复活塞密封系统中的瞬态弹性流体动力润滑问题,提出了一种高效的直接流固耦合方法。采用有限元离散化方法建立了详细的三维流固耦合模型。进行了材料试验,获得了橡胶O型圈三阶Ogden本构模型的参数。分析了不同活塞速度下密封系统的密封性能和摩擦力。获得了从混合润滑到全膜润滑的临界速度。研究了气缸表面三种不同的微凸几何形状对活塞密封和润滑性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology - Materials, Surfaces & Interfaces
Tribology - Materials, Surfaces & Interfaces MATERIALS SCIENCE, COATINGS & FILMS-
CiteScore
2.80
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信