Friedlander-Keller ray expansions in electromagnetism: Monochromatic radiation from arbitrary surfaces in three dimensions

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. Radjen, R. Tew, G. Gradoni
{"title":"Friedlander-Keller ray expansions in electromagnetism: Monochromatic radiation from arbitrary surfaces in three dimensions","authors":"A. Radjen, R. Tew, G. Gradoni","doi":"10.1017/s0956792522000249","DOIUrl":null,"url":null,"abstract":"The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (i) an oscillatory exponential with a phase term that is linear in the wave-number and (ii) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792522000249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (i) an oscillatory exponential with a phase term that is linear in the wave-number and (ii) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory.
电磁学中的Friedlander-Keller射线展开:来自三维任意表面的单色辐射
将射线理论应用于求解大波数极限下的麦克斯韦方程组的标准方法包括寻求具有(i)振荡指数的解,该振荡指数的相位项在波数上是线性的,并且(ii)具有用该波数的逆幂表示的振幅轮廓。Friedlander–Keller修正在波浪结构的相位中包含了该波数的附加幂,并且在分析某些波浪现象(如蠕变和回音壁波传播)时,该附加项至关重要。然而,其他波动现象需要推广这一理论。本文的目的是为麦克斯韦方程组提供一个“广义”的Friedlander–Keller-ray变换,以获得一组新的波结构不同相位项和振幅的场方程;然后根据符合特定或一般波前的边界数据来求解这些问题。这些例子特别需要这种概括,因为它们不符合经典的射线理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信