Entropy Generation of Cu–Al2O3/Water Flow with Convective Boundary Conditions through a Porous Stretching Sheet with Slip Effect, Joule Heating and Chemical Reaction

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Maria Immaculate Joyce, Jagan Kandasamy, S. Sivanandam
{"title":"Entropy Generation of Cu–Al2O3/Water Flow with Convective Boundary Conditions through a Porous Stretching Sheet with Slip Effect, Joule Heating and Chemical Reaction","authors":"Maria Immaculate Joyce, Jagan Kandasamy, S. Sivanandam","doi":"10.3390/mca28010018","DOIUrl":null,"url":null,"abstract":"Currently, the efficiency of heat exchange is not only determined by enhancements in the rate of heat transfer but also by economic and accompanying considerations. Responding to this demand, many scientists have been involved in improving heat transfer performance, which is referred to as heat transfer enhancement, augmentation, or intensification. This study deals with the influence on hybrid Cu–Al2CO3/water nanofluidic flows on a porous stretched sheet of velocity slip, convective boundary conditions, Joule heating, and chemical reactions using an adapted Tiwari–Das model. Nonlinear fundamental equations such as continuity, momentum, energy, and concentration are transmuted into a non-dimensional ordinary nonlinear differential equation by similarity transformations. Numerical calculations are performed using HAM and the outcomes are traced on graphs such as velocity, temperature, and concentration. Temperature and concentration profiles are elevated as porosity is increased, whereas velocity is decreased. The Biot number increases the temperature profile. The rate of entropy is enhanced as the Brinkman number is raised. A decrease in the velocity is seen as the slip increases.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

Abstract

Currently, the efficiency of heat exchange is not only determined by enhancements in the rate of heat transfer but also by economic and accompanying considerations. Responding to this demand, many scientists have been involved in improving heat transfer performance, which is referred to as heat transfer enhancement, augmentation, or intensification. This study deals with the influence on hybrid Cu–Al2CO3/water nanofluidic flows on a porous stretched sheet of velocity slip, convective boundary conditions, Joule heating, and chemical reactions using an adapted Tiwari–Das model. Nonlinear fundamental equations such as continuity, momentum, energy, and concentration are transmuted into a non-dimensional ordinary nonlinear differential equation by similarity transformations. Numerical calculations are performed using HAM and the outcomes are traced on graphs such as velocity, temperature, and concentration. Temperature and concentration profiles are elevated as porosity is increased, whereas velocity is decreased. The Biot number increases the temperature profile. The rate of entropy is enhanced as the Brinkman number is raised. A decrease in the velocity is seen as the slip increases.
具有滑动效应、焦耳加热和化学反应的多孔拉伸片对流边界条件下Cu-Al2O3 /水流动的熵生成
目前,热交换的效率不仅取决于传热率的提高,还取决于经济因素和伴随因素。为了满足这一需求,许多科学家都参与了提高传热性能的工作,这被称为传热增强、增强或强化。本研究使用改进的Tiwari–Das模型研究了Cu–Al2CO3/水纳米流体混合流动对速度滑移、对流边界条件、焦耳加热和化学反应的多孔拉伸片的影响。通过相似变换将连续性、动量、能量和浓度等非线性基本方程转化为无量纲常非线性微分方程。使用HAM进行数值计算,并在速度、温度和浓度等图表上跟踪结果。温度和浓度分布随着孔隙率的增加而升高,而速度则降低。Biot数会增加温度分布。随着Brinkman数的增加,熵的速率增加。随着滑移的增加,速度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信