The petrogenesis and emplacement mechanism of layered ultramafic-mafic complexes of the Barberton Greenstone Belt: Insights from the Stolzburg Complex, South Africa
{"title":"The petrogenesis and emplacement mechanism of layered ultramafic-mafic complexes of the Barberton Greenstone Belt: Insights from the Stolzburg Complex, South Africa","authors":"M. M. Tau, R. Bolhar, A. Wilson, C. Anhaeusser","doi":"10.25131/sajg.125.0013","DOIUrl":null,"url":null,"abstract":"\n Ultramafic-mafic layered complexes are important but not-well studied components of Archaean granitoid-greenstone terranes. In the vicinity of the Barberton Greenstone Belt (BGB), at least 27 such complexes are intimately associated with the supracrustal succession. The petrogenesis of one of these layered bodies, the Stolzburg Complex (SC), is explored, together with its relationship to the surrounding Barberton volcanic succession.\n Previous models for the origin of Barberton layered complexes proposed a variety of mechanisms, such as single chamber subvolcanic sills, ponded lavas, and alpine-type tectonites. In contrast, the present work suggests that emplacement mostly occurred as sheeted sills of crystal slurries into the country rocks. Unlike the subvolcanic sills model, whereby each complex grew through repetitive magma injection and differentiation in a single chamber, the preferred model regards the layered bodies as ‘stacks’ of discrete intrusions, where each magmatic unit represents a distinct sill. Through comparison of trace element geochemistry (i.e., trace element ratios and patterns), the Lower and Upper divisions of the SC are inferred to be petrogenetically related, but compositionally distinct from the enveloping Nelshoogte volcanic rocks. The trace element geochemistry of the Lower and Upper divisions of the complex is indistinguishable. While the SC ultramafic rocks display an Al-undepleted character, Nelshoogte metavolcanics can be classified as Al-depleted komatiites and komatiitic basalts.","PeriodicalId":49494,"journal":{"name":"South African Journal of Geology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.25131/sajg.125.0013","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Ultramafic-mafic layered complexes are important but not-well studied components of Archaean granitoid-greenstone terranes. In the vicinity of the Barberton Greenstone Belt (BGB), at least 27 such complexes are intimately associated with the supracrustal succession. The petrogenesis of one of these layered bodies, the Stolzburg Complex (SC), is explored, together with its relationship to the surrounding Barberton volcanic succession.
Previous models for the origin of Barberton layered complexes proposed a variety of mechanisms, such as single chamber subvolcanic sills, ponded lavas, and alpine-type tectonites. In contrast, the present work suggests that emplacement mostly occurred as sheeted sills of crystal slurries into the country rocks. Unlike the subvolcanic sills model, whereby each complex grew through repetitive magma injection and differentiation in a single chamber, the preferred model regards the layered bodies as ‘stacks’ of discrete intrusions, where each magmatic unit represents a distinct sill. Through comparison of trace element geochemistry (i.e., trace element ratios and patterns), the Lower and Upper divisions of the SC are inferred to be petrogenetically related, but compositionally distinct from the enveloping Nelshoogte volcanic rocks. The trace element geochemistry of the Lower and Upper divisions of the complex is indistinguishable. While the SC ultramafic rocks display an Al-undepleted character, Nelshoogte metavolcanics can be classified as Al-depleted komatiites and komatiitic basalts.
期刊介绍:
The South African Journal of Geology publishes scientific papers, notes, stratigraphic descriptions and discussions in the broadly defined fields of geoscience that are related directly or indirectly to the geology of Africa. Contributions relevant to former supercontinental entities such as Gondwana and Rodinia are also welcome as are topical studies on any geoscience-related discipline. Review papers are welcome as long as they represent original, new syntheses. Special issues are also encouraged but terms for these must be negotiated with the Editors.