{"title":"Quenched law of large numbers and quenched central limit theorem for multiplayer leagues with ergodic strengths","authors":"J. Borga, Benedetta Cavalli","doi":"10.1214/22-aap1790","DOIUrl":null,"url":null,"abstract":"We propose and study a new model for competitions, specifically sports multi-player leagues where the initial strengths of the teams are independent i.i.d. random variables that evolve during different days of the league according to independent ergodic processes. The result of each match is random: the probability that a team wins against another team is determined by a function of the strengths of the two teams in the day the match is played. Our model generalizes some previous models studied in the physical and mathematical literature and is defined in terms of different parameters that can be statistically calibrated. We prove a quenched -- conditioning on the initial strengths of the teams -- law of large numbers and a quenched central limit theorem for the number of victories of a team according to its initial strength. To obtain our results, we prove a theorem of independent interest. For a stationary process $\\xi=(\\xi_i)_{i\\in \\mathbb{N}}$ satisfying a mixing condition and an independent sequence of i.i.d. random variables $(s_i)_{i\\in \\mathbb{N}}$, we prove a quenched -- conditioning on $(s_i)_{i\\in\\mathbb{N}}$ -- central limit theorem for sums of the form $\\sum_{i=1}^{n}g\\left(\\xi_i,s_i\\right)$, where $g$ is a bounded measurable function. We highlight that the random variables $g\\left(\\xi_i,s_i\\right)$ are not stationary conditioning on $(s_i)_{i\\in\\mathbb{N}}$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1790","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We propose and study a new model for competitions, specifically sports multi-player leagues where the initial strengths of the teams are independent i.i.d. random variables that evolve during different days of the league according to independent ergodic processes. The result of each match is random: the probability that a team wins against another team is determined by a function of the strengths of the two teams in the day the match is played. Our model generalizes some previous models studied in the physical and mathematical literature and is defined in terms of different parameters that can be statistically calibrated. We prove a quenched -- conditioning on the initial strengths of the teams -- law of large numbers and a quenched central limit theorem for the number of victories of a team according to its initial strength. To obtain our results, we prove a theorem of independent interest. For a stationary process $\xi=(\xi_i)_{i\in \mathbb{N}}$ satisfying a mixing condition and an independent sequence of i.i.d. random variables $(s_i)_{i\in \mathbb{N}}$, we prove a quenched -- conditioning on $(s_i)_{i\in\mathbb{N}}$ -- central limit theorem for sums of the form $\sum_{i=1}^{n}g\left(\xi_i,s_i\right)$, where $g$ is a bounded measurable function. We highlight that the random variables $g\left(\xi_i,s_i\right)$ are not stationary conditioning on $(s_i)_{i\in\mathbb{N}}$.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.