Unconditional quantile regression with high‐dimensional data

IF 1.9 3区 经济学 Q2 ECONOMICS
Yuya Sasaki, T. Ura, Yichong Zhang
{"title":"Unconditional quantile regression with high‐dimensional data","authors":"Yuya Sasaki, T. Ura, Yichong Zhang","doi":"10.3982/qe1896","DOIUrl":null,"url":null,"abstract":"This paper considers estimation and inference for heterogeneous counterfactual effects with high‐dimensional data. We propose a novel robust score for debiased estimation of the unconditional quantile regression (Firpo, Fortin, and Lemieux (2009)) as a measure of heterogeneous counterfactual marginal effects. We propose a multiplier bootstrap inference and develop asymptotic theories to guarantee the size control in large sample. Simulation studies support our theories. Applying the proposed method to Job Corps survey data, we find that a policy, which counterfactually extends the duration of exposures to the Job Corps training program, will be effective especially for the targeted subpopulations of lower potential wage earners.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3982/qe1896","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 10

Abstract

This paper considers estimation and inference for heterogeneous counterfactual effects with high‐dimensional data. We propose a novel robust score for debiased estimation of the unconditional quantile regression (Firpo, Fortin, and Lemieux (2009)) as a measure of heterogeneous counterfactual marginal effects. We propose a multiplier bootstrap inference and develop asymptotic theories to guarantee the size control in large sample. Simulation studies support our theories. Applying the proposed method to Job Corps survey data, we find that a policy, which counterfactually extends the duration of exposures to the Job Corps training program, will be effective especially for the targeted subpopulations of lower potential wage earners.
高维数据的无条件分位数回归
本文考虑了具有高维数据的异质反事实效应的估计和推理。我们提出了一种新的稳健评分,用于无条件分位数回归的去偏估计(Firpo、Fortin和Lemieux(2009)),作为异质反事实边际效应的衡量标准。我们提出了一种乘数自举推理,并发展了渐近理论来保证大样本中的大小控制。模拟研究支持我们的理论。将所提出的方法应用于就业团队调查数据,我们发现,一项反事实地延长就业团队培训计划持续时间的政策将是有效的,尤其是对潜在低收入人群的目标人群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信