{"title":"Joint Diversity and Redundancy for Resilient Service Chain Provisioning","authors":"Abdelhamid Alleg, T. Ahmed, M. Mosbah, R. Boutaba","doi":"10.1109/JSAC.2020.2986867","DOIUrl":null,"url":null,"abstract":"Achieving network resiliency in terms of availability, reliability and fault tolerance is a central concern for network designers and operators to achieve business continuity and increase productivity. It is particularly challenging in increasingly virtualized network environments where network services are exposed to both hardware (e.g., bare-metal servers, switches, links, etc.) and software (VNF instances) failures. This increased risk of failures can severely deteriorate the quality of the deployed services and even lead to complete service outages. In this context, deploying services in operational networks often exacerbates the availability problem and requires considering availability of hardware and software components both individually and collectively. A key challenge in this perspective is the additional resources needed to achieve partial or full recovery after failures. In this paper, we propose a joint selective diversity and tailored redundancy mechanism to provision resilient services in an NFV framework. Diversity splits a single VNF into a pool of “N” active instances called replicas while redundancy provides “P” standby ready-to-use instances called backups. Based on an enhanced N+P model, we propose a placement solution of Service Function Chains (SFC) modeled as a Mixed Integer Linear Program (MILP). The proposed solution is designed to meet a target SFC availability level and, at the same time, to reduce the inherent cost due to diversity (overhead) and redundancy (backup resources). We evaluate the efficiency of the proposed solution through numerically and experimentally. Results demonstrate that our solution, not only, improves service resiliency by avoiding complete service outages but can also overcome network resource fragmentation.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1490-1504"},"PeriodicalIF":13.8000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986867","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2986867","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 22
Abstract
Achieving network resiliency in terms of availability, reliability and fault tolerance is a central concern for network designers and operators to achieve business continuity and increase productivity. It is particularly challenging in increasingly virtualized network environments where network services are exposed to both hardware (e.g., bare-metal servers, switches, links, etc.) and software (VNF instances) failures. This increased risk of failures can severely deteriorate the quality of the deployed services and even lead to complete service outages. In this context, deploying services in operational networks often exacerbates the availability problem and requires considering availability of hardware and software components both individually and collectively. A key challenge in this perspective is the additional resources needed to achieve partial or full recovery after failures. In this paper, we propose a joint selective diversity and tailored redundancy mechanism to provision resilient services in an NFV framework. Diversity splits a single VNF into a pool of “N” active instances called replicas while redundancy provides “P” standby ready-to-use instances called backups. Based on an enhanced N+P model, we propose a placement solution of Service Function Chains (SFC) modeled as a Mixed Integer Linear Program (MILP). The proposed solution is designed to meet a target SFC availability level and, at the same time, to reduce the inherent cost due to diversity (overhead) and redundancy (backup resources). We evaluate the efficiency of the proposed solution through numerically and experimentally. Results demonstrate that our solution, not only, improves service resiliency by avoiding complete service outages but can also overcome network resource fragmentation.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.