Linear and orbital stability analysis for solitary-wave solutions of variable-coefficient scalar-field equations

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Mashael Alammari, Stanley Snelson
{"title":"Linear and orbital stability analysis for solitary-wave solutions of variable-coefficient scalar-field equations","authors":"Mashael Alammari, Stanley Snelson","doi":"10.1142/s0219891622500047","DOIUrl":null,"url":null,"abstract":"We study general semilinear scalar-field equations on the real line with variable coefficients in the linear terms. These coefficients are uniformly small, but slowly decaying, perturbations of a constant-coefficient operator. We are motivated by the question of how these perturbations of the equation may change the stability properties of kink solutions (one-dimensional topological solitons). We prove existence of a stationary kink solution in our setting, and perform a detailed spectral analysis of the corresponding linearized operator, based on perturbing the linearized operator around the constant-coefficient kink. We derive a formula that allows us to check whether a discrete eigenvalue emerges from the essential spectrum under this perturbation. Known examples suggest that this extra eigenvalue may have an important influence on the long-time dynamics in a neighborhood of the kink. We also establish orbital stability of solitary-wave solutions in the variable-coefficient regime, despite the possible presence of negative eigenvalues in the linearization.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891622500047","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

We study general semilinear scalar-field equations on the real line with variable coefficients in the linear terms. These coefficients are uniformly small, but slowly decaying, perturbations of a constant-coefficient operator. We are motivated by the question of how these perturbations of the equation may change the stability properties of kink solutions (one-dimensional topological solitons). We prove existence of a stationary kink solution in our setting, and perform a detailed spectral analysis of the corresponding linearized operator, based on perturbing the linearized operator around the constant-coefficient kink. We derive a formula that allows us to check whether a discrete eigenvalue emerges from the essential spectrum under this perturbation. Known examples suggest that this extra eigenvalue may have an important influence on the long-time dynamics in a neighborhood of the kink. We also establish orbital stability of solitary-wave solutions in the variable-coefficient regime, despite the possible presence of negative eigenvalues in the linearization.
变系数标量场方程孤立波解的线性和轨道稳定性分析
我们研究了线性项中具有变系数的实线上的一般双线性标量场方程。这些系数是恒定系数算子的均匀小但缓慢衰减的扰动。我们的动机是方程的这些扰动如何改变扭结解(一维拓扑孤子)的稳定性。在我们的设置中,我们证明了平稳扭结解的存在,并基于在常系数扭结周围扰动线性化算子,对相应的线性化算子进行了详细的谱分析。我们推导了一个公式,允许我们检查在这种扰动下,本质谱是否出现离散特征值。已知的例子表明,这个额外的特征值可能对扭结附近的长期动力学有重要影响。我们还建立了变系数区域中孤立波解的轨道稳定性,尽管线性化中可能存在负本征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信