Dynamic Behavior of Cortisol and Cortisol Metabolites in Human Eccrine Sweat

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY
J. Runyon, Min Jia, M. Goldstein, Perry Skeath, L. Abrell, J. Chorover, E. Sternberg
{"title":"Dynamic Behavior of Cortisol and Cortisol Metabolites in Human Eccrine Sweat","authors":"J. Runyon, Min Jia, M. Goldstein, Perry Skeath, L. Abrell, J. Chorover, E. Sternberg","doi":"10.36001/ijphm.2019.v10i3.2707","DOIUrl":null,"url":null,"abstract":"The simultaneous measurement of cortisol with its downstream metabolites in human eccrine sweat is a sensitive approach to capture minute-to-minute stress responses. This study investigates exercise stress induced time dependent dynamic changes in cortisol, cortisone and downstream inactive cortisol metabolites in human eccrine sweat using a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Cortisol and metabolite production (change in concentration over time) was measured in sweat at different time points during an administered exercise stress session with four healthy volunteers. Biomarker production plots were found to be highly individualized and sensitive to stress interventions such as exercise, and corresponded with stress response measures such as increases in heart rate. The LC-MS/MS method yielded baseline resolution between cortisol and cortisol metabolites with lower levels of detection and quantitation for each compound below 1 partper-billion (ppb). Cortisol and cortisol metabolites were found at concentrations ranging from 1 – 25 ppb in human eccrine sweat. They were also found to be stable in sweat with respect to temperature (37 C for up to 5 hours), pH (3-9) and freeze/thaw cycles (up to 4) This indicates that changes in these biomarker concentrations and their rate of production are due to stress-related physiological enzyme activation, rather than passive degradation in sweat. The physiological status of enzyme activation is thus captured and preserved in human eccrine sweat samples. This is advantageous for the development of wearable devices and methodologies which can assess human health, stress, wellbeing and performance.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2019.v10i3.2707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The simultaneous measurement of cortisol with its downstream metabolites in human eccrine sweat is a sensitive approach to capture minute-to-minute stress responses. This study investigates exercise stress induced time dependent dynamic changes in cortisol, cortisone and downstream inactive cortisol metabolites in human eccrine sweat using a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Cortisol and metabolite production (change in concentration over time) was measured in sweat at different time points during an administered exercise stress session with four healthy volunteers. Biomarker production plots were found to be highly individualized and sensitive to stress interventions such as exercise, and corresponded with stress response measures such as increases in heart rate. The LC-MS/MS method yielded baseline resolution between cortisol and cortisol metabolites with lower levels of detection and quantitation for each compound below 1 partper-billion (ppb). Cortisol and cortisol metabolites were found at concentrations ranging from 1 – 25 ppb in human eccrine sweat. They were also found to be stable in sweat with respect to temperature (37 C for up to 5 hours), pH (3-9) and freeze/thaw cycles (up to 4) This indicates that changes in these biomarker concentrations and their rate of production are due to stress-related physiological enzyme activation, rather than passive degradation in sweat. The physiological status of enzyme activation is thus captured and preserved in human eccrine sweat samples. This is advantageous for the development of wearable devices and methodologies which can assess human health, stress, wellbeing and performance.
人体汗液中皮质醇及其代谢产物的动态行为
同时测量人体分泌汗液中的皮质醇及其下游代谢物是一种捕捉每分钟应激反应的灵敏方法。本研究采用一种新型液相色谱-串联质谱(LC-MS/MS)方法研究运动应激诱导的人体汗液中皮质醇、可的松和下游无活性皮质醇代谢物的时间依赖性动态变化。在四名健康志愿者的运动应激过程中,在不同的时间点测量了皮质醇和代谢物的产生(浓度随时间的变化)。研究发现,生物标志物生成图高度个性化,对运动等应激干预措施敏感,并与心率增加等应激反应措施相对应。LC-MS/MS方法产生皮质醇和皮质醇代谢物之间的基线分辨率,每种化合物低于十亿分之一(ppb)的检测和定量水平较低。皮质醇和皮质醇代谢物在人体汗液中的浓度范围为1 - 25 ppb。研究还发现,它们在汗液中相对于温度(37℃长达5小时)、pH值(3-9)和冻干/解冻循环(长达4小时)都是稳定的。这表明,这些生物标志物浓度及其生产速度的变化是由于与压力相关的生理酶激活,而不是汗液中的被动降解。酶活化的生理状态因此被捕获并保存在人汗液样品中。这有利于可穿戴设备和方法的发展,可以评估人类的健康、压力、福祉和表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信