GEODYNAMICS

IF 1 Q3 GEOCHEMISTRY & GEOPHYSICS
S. Kováčiková, I. Logvinov, V. Tarasov
{"title":"GEODYNAMICS","authors":"S. Kováčiková, I. Logvinov, V. Tarasov","doi":"10.23939/jgd2022.02.099","DOIUrl":null,"url":null,"abstract":"The purpose of the presented work was to model the electrical conductivity distribution in the northwestern part of the Ukrainian shield and to study the relationship of geoelectric anomalies with natural mineral deposits and with signs of possible tectonic activation of long-lived fault systems on the Shield. The methodology was based on long-period magnetotelluric and magnetovariational measurements in the period range of 3-16 to 2500-3600 s. The dense network of measurement sites made it possible to explore the geoelectric structure of the Ukrainian Shield segment limited by the coordinates 26°-30°E and 48°-51,7°N. 2D and quasi-3D inversion of the obtained magnetotelluric and geomagnetic responses resulted in the creation of overview models of electrical resistivity/conductivity for the territory of investigation. As a result, geoelectrically anomalous structures were identified at different depths. The local character of the conductors and their position indicate their connection with recently activated fault zones, their junctions and with metallogeny. The Precambrian age of crystalline rocks of the investigated area refers mainly to the electronic-type graphite-sulphite origin of increased conductivity, however the depth of conductive features, their vertical extent and their link to rejuvenated fault systems may indicate the genetic connection of various minerals and their subsequent precipitation with deep fluid migration. Originality. The obtained results aimed at clarifying the deep structure and correlating the geoelectric features of the earth’s crust and upper mantle with fault systems and deposits of various natural mineral sources. In addition, they alone can serve as further evidence of possible tectonic activation processes in the studied area. Practical significance. The presented results can bring social benefits by identifying areas of mineral endowment, and in the field of geodynamics they can contribute to the assessment of natural hazard in mapping the course of tectonically active fault systems.","PeriodicalId":46263,"journal":{"name":"Geodynamics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jgd2022.02.099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of the presented work was to model the electrical conductivity distribution in the northwestern part of the Ukrainian shield and to study the relationship of geoelectric anomalies with natural mineral deposits and with signs of possible tectonic activation of long-lived fault systems on the Shield. The methodology was based on long-period magnetotelluric and magnetovariational measurements in the period range of 3-16 to 2500-3600 s. The dense network of measurement sites made it possible to explore the geoelectric structure of the Ukrainian Shield segment limited by the coordinates 26°-30°E and 48°-51,7°N. 2D and quasi-3D inversion of the obtained magnetotelluric and geomagnetic responses resulted in the creation of overview models of electrical resistivity/conductivity for the territory of investigation. As a result, geoelectrically anomalous structures were identified at different depths. The local character of the conductors and their position indicate their connection with recently activated fault zones, their junctions and with metallogeny. The Precambrian age of crystalline rocks of the investigated area refers mainly to the electronic-type graphite-sulphite origin of increased conductivity, however the depth of conductive features, their vertical extent and their link to rejuvenated fault systems may indicate the genetic connection of various minerals and their subsequent precipitation with deep fluid migration. Originality. The obtained results aimed at clarifying the deep structure and correlating the geoelectric features of the earth’s crust and upper mantle with fault systems and deposits of various natural mineral sources. In addition, they alone can serve as further evidence of possible tectonic activation processes in the studied area. Practical significance. The presented results can bring social benefits by identifying areas of mineral endowment, and in the field of geodynamics they can contribute to the assessment of natural hazard in mapping the course of tectonically active fault systems.
地球动力学
本工作的目的是模拟乌克兰地盾西北部的电导率分布,并研究地电异常与天然矿床的关系,以及地盾上长期断层系统可能的构造激活迹象。该方法基于3-16至2500-3600 s周期内的长周期大地电磁和磁变分测量。密集的测量点网络使探索受坐标26°-30°E和48°-51.7°N限制的乌克兰地盾段地电结构成为可能。对所获得的大地电磁和地磁响应进行2D和准3D反演,从而为调查区域创建了电阻率/电导率的概览模型。结果,在不同深度发现了地电异常结构。导体的局部特征及其位置表明它们与最近激活的断层带、它们的连接以及与成矿作用的联系。调查区域结晶岩的前寒武纪主要是指导电性增加的电子型石墨-亚硫酸盐成因,但导电特征的深度、垂直范围及其与新生断层系统的联系可能表明各种矿物的成因联系及其随后的沉淀与深部流体迁移。独创性所获得的结果旨在阐明地壳和上地幔的深层结构,并将其地电特征与断层系统和各种天然矿物来源的矿床联系起来。此外,它们本身可以作为研究区域可能的构造活化过程的进一步证据。实际意义。所提出的结果可以通过确定矿产资源区域带来社会效益,在地球动力学领域,它们可以有助于在绘制构造活动断层系统过程中评估自然灾害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geodynamics
Geodynamics GEOCHEMISTRY & GEOPHYSICS-
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信